Back to Search Start Over

Dense organic molecules/graphene network anodes with superior volumetric and areal performance for asymmetric supercapacitors

Authors :
Shichao Wu
Lina Zhang
Ximan Dong
Changjun Cui
Zhe Weng
Wei Lv
Quan-Hong Yang
Zifeng Lin
Yaqian Deng
Ying Tao
Daliang Han
Source :
Journal of Materials Chemistry A. 8:461-469
Publication Year :
2020
Publisher :
Royal Society of Chemistry (RSC), 2020.

Abstract

Volumetric and areal capacitance are as important as gravimetric capacitance for small energy storage devices. However, achieving both a high volumetric and a high areal capacitance is still a big challenge. Here we report a dense redox organic molecules/graphene network, in which highly redox active sodium anthraquinone-2-sulfonate (AQS) molecules are anchored on interconnected and highly conductive graphene sheets by noncovalent π–π interactions to form high-performance supercapacitors (SCs). The AQS/graphene (AQS/G) has a high volumetric specific capacitance of up to 650 F cm−3 and an excellent rate capability (422 F cm−3 even at 30 A g−1), as well as a good cycling stability. A maximum areal specific capacitance of 13.3 F cm−2 is achieved at a high mass loading of 32 mg cm−2 (200 μm in thickness), which is amongst the highest values recorded for organic-based materials for SCs. An asymmetric SC constructed with AQS/G and RuO2/graphene delivers a maximum volumetric energy density of 44 W h L−1. This outstanding performance is attributed to the excellent electron conduction and ion transport provided by the dense but interconnected graphene network. This work suggests a new way for organic-based high-performance electrode materials to be used in electrochemical energy storage devices.

Details

ISSN :
20507496 and 20507488
Volume :
8
Database :
OpenAIRE
Journal :
Journal of Materials Chemistry A
Accession number :
edsair.doi...........fbe7569dcd391540197374577718bbf5