Back to Search Start Over

Recognition of abnormal body surface characteristics of oplegnathus punctatus

Authors :
Qing Wang
Li Beibei
Jun Yue
Zhenbo Li
Zhenzhong Li
Jia Shixiang
Source :
Information Processing in Agriculture. 9:575-585
Publication Year :
2022
Publisher :
Elsevier BV, 2022.

Abstract

To identify the abnormal characteristics of the oplegnathus punctatus is great importance to the detection of iridovirus disease in the breeding environment. In this paper, an advanced neural network model to identify the characteristics of the oplegnathus punctatus and predict its different periods of suffering from iridovirus disease is proposed based on the establishment of a data set. First of all, a standard format data set of oplegnathus punctatus and an abnormal format date set are established in order to verify the effectiveness of the method in this paper. And then, the feature extraction fusion method is used for preprocessing in terms of the abnormal format data set, which combines the edge features extracted by the improved multi-template Sobel operator and the color features extracted by the HSV model. Finally, an improved VGG-GoogleNet network recognition model comes into being through the fusion and improvement of the VGG and GoogleNet neural network structure. The experiments results show that the prediction accuracy rate for oplegnathus punctatus suffering from iridovirus disease in the the abnormal format data set and the standard format data set are improved, which reach 98.55% and 69.18%.

Details

ISSN :
22143173
Volume :
9
Database :
OpenAIRE
Journal :
Information Processing in Agriculture
Accession number :
edsair.doi...........fedb1a01961f1bb5fd2b595f5889edfe
Full Text :
https://doi.org/10.1016/j.inpa.2021.04.009