Back to Search Start Over

Unprecedented 'All-in-One' Lanthanide-Doped Mesoporous Silica Frameworks for Fluorescence/MR Imaging and Combination of NIR Light Triggered Chemo-Photodynamic Therapy of Tumors

Authors :
Kuo Chu Hwang
Poliraju Kalluru
Chi-Shiun Chiang
Raviraj Vankayala
Source :
Advanced Functional Materials. 26:7908-7920
Publication Year :
2016
Publisher :
Wiley, 2016.

Abstract

Designing a single multifunctional nanoparticle that can simultaneously impart both diagnostic and therapeutic functions is considered to be a long-lasting hurdle for biomedical researchers. Conventionally, a multifunctional nanoparticle can be constructed by integrating organic dyes/magnetic nanoparticles to impart diagnostic functions and anticancer drugs/photosensitizers to achieve therapeutic outcomes. These multicomponents systems usually suffer from severe photobleaching problems and cannot be activated by near-infrared (NIR) light. Here, it is demonstrated that all-in-one lanthanide-doped mesoporous silica frameworks (EuGdOx@MSF) loaded with an anticancer drug, doxorubicin (DOX) can facilitate simultaneous bimodal magnetic resonance (MR) imaging with approximately twofold higher T1-MR contrast as compared to the commercial Gd(III)-DTPA complex and fluorescence imaging with excellent photostability. Upon a very low dose (130 mW cm−2) of NIR light (980 nm) irradiation, the EuGdOx@MSF not only can sensitize formation of singlet oxygen (1O2) by itself but also can phototrigger the release of the DOX payload effectively to exert combined chemo-photodynamic therapeutic (PDT) effects and destroy solid tumors in mice completely. It is also discovered for the first time that the EuGdOx@MSF-mediated PDT effect can suppress the level of the key drug resistant protein, i.e., p-glycoprotein (p-gp) and help alleviate the drug resistant problem commonly associated with many cancers.

Details

ISSN :
1616301X
Volume :
26
Database :
OpenAIRE
Journal :
Advanced Functional Materials
Accession number :
edsair.doi...........fee583d7f1da1bd5beb74a83305851ac
Full Text :
https://doi.org/10.1002/adfm.201603749