Back to Search Start Over

AZURE KINECT BODY TRACKING UNDER REVIEW FOR THE SPECIFIC CASE OF UPPER LIMB EXERCISES

Authors :
Ivorra, Eugenio
Ortega Pérez, Mario
Alcañiz Raya, Mariano Luis
Source :
RiuNet. Repositorio Institucional de la Universitat Politécnica de Valéncia, instname
Publication Year :
2021
Publisher :
MM Publishing, s.r.o., 2021.

Abstract

[EN] A tool for human pose estimation and quantification using consumer-level equipment is a long-pursued objective. Many studies have employed the Microsoft Kinect v2 depth camera but with recent release of the new Kinect Azure a revision is required. This work researches the specific case of estimating the range of motion in five upper limb exercises using four different pose estimation methods. These exercises were recorded with the Kinect Azure camera and assessed with the OptiTrack motion tracking system as baseline. The statistical analysis consisted of evaluation of intra-rater reliability with intra-class correlation, the Pearson correlation coefficient and Bland-Altman statistical procedure. The modified version of the OpenPose algorithm with the post-processing algorithm PoseFix had excellent reliability with most intra-class correlations being over 0.75. The Azure body tracking algorithm had intermediate results. The results obtained justify clinicians employing these methods, as quick and low-cost simple tools, to assess upper limb angles<br />THE OPTITRACK 3D CAPTURE MOVEMENT SYSTEM WAS FUNDED BY THE EUROPEAN UNION THROUGH THE ERDF (EUROPEAN REGIONAL DEVELOPMENT FUND) PROGRAM OF THE VALENCIAN COMMUNITY 2014-2020 (IDIFEDER/2018/029)

Details

ISSN :
18050476 and 18031269
Volume :
2021
Database :
OpenAIRE
Journal :
MM Science Journal
Accession number :
edsair.doi.dedup.....00065a964c280dadcc69da2ac41b2b34
Full Text :
https://doi.org/10.17973/mmsj.2021_6_2021012