Back to Search
Start Over
Influenza Virus A Infection of Human Monocyte and Macrophage Subpopulations Reveals Increased Susceptibility Associated with Cell Differentiation
- Source :
- Hoeve, M A, Nash, A A, Jackson, D, Randall, R E & Dransfield, I 2012, ' Influenza Virus A Infection of Human Monocyte and Macrophage Subpopulations Reveals Increased Susceptibility Associated with Cell Differentiation ', PLoS ONE, vol. 7, no. 1, e29443 . https://doi.org/10.1371/journal.pone.0029443, PLoS ONE, Vol 7, Iss 1, p e29443 (2012), PLoS ONE
- Publication Year :
- 2012
-
Abstract
- Influenza virus infection accounts for significant morbidity and mortality world-wide. Interactions of the virus with host cells, particularly those of the macrophage lineage, are thought to contribute to various pathological changes associated with poor patient outcome. Development of new strategies to treat disease therefore requires a detailed understanding of the impact of virus infection upon cellular responses. Here we report that human blood-derived monocytes could be readily infected with the H3N2 influenza virus A/Udorn/72 (Udorn), irrespective of their phenotype (CD14(++)/CD16(-), CD14(++)/CD16(+) or CD14(dim)CD16(++)), as determined by multi-colour flow cytometry for viral haemagglutinin (HA) expression and cell surface markers 8-16 hours post infection. Monocytes are relatively resistant to influenza-induced cell death early in infection, as approximately 20% of cells showed influenza-induced caspase-dependent apoptosis. Infection of monocytes with Udorn also induced the release of IL-6, IL-8, TNF alpha and IP-10, suggesting that NS1 protein of Udorn does not (effectively) inhibit this host defence response in human monocytes. Comparative analysis of human monocyte-derived macrophages (Mph) demonstrated greater susceptibility to human influenza virus than monocytes, with the majority of both pro-inflammatory Mph1 and anti-inflammatory/regulatory Mph2 cells expressing viral HA after infection with Udorn. Influenza infection of macrophages also induced cytokine and chemokine production. However, both Mph1 and Mph2 phenotypes released comparable amounts of TNF alpha, IL-12p40 and IP-10 after infection with H3N2, in marked contrast to differential responses to LPS-stimulation. In addition, we found that influenza virus infection augmented the capacity of poorly phagocytic Mph1 cells to phagocytose apoptotic cells by a mechanism that was independent of either IL-10 or the Mer receptor tyrosine kinase/Protein S pathway. In summary, our data reveal that influenza virus infection of human macrophages causes functional alterations that may impact on the process of resolution of inflammation, with implications for viral clearance and lung pathology. Publisher PDF
- Subjects :
- Q Science
Viral Diseases
Chemokine
Anatomy and Physiology
Macrophage
Apoptosis
medicine.disease_cause
Monocyte
Monocytes
Immune Physiology
Influenza A virus
Cells, Cultured
Medicine(all)
Multidisciplinary
Agricultural and Biological Sciences(all)
Cell Differentiation
Infectious Diseases
medicine.anatomical_structure
Cytophagocytosis
Caspases
Cytokines
Medicine
Tumor necrosis factor alpha
Disease Susceptibility
Research Article
Immune Cells
CD14
Lung pathology
Science
Immunology
Biology
CD16
Virus
Dogs
SDG 3 - Good Health and Well-being
Influenza, Human
medicine
Animals
Humans
Inflammation
Biochemistry, Genetics and Molecular Biology(all)
Influenza A Virus, H3N2 Subtype
Macrophages
Cellular response
Immunologic Subspecialties
Virology
biology.protein
Clinical Immunology
Influenza virus
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Journal :
- Hoeve, M A, Nash, A A, Jackson, D, Randall, R E & Dransfield, I 2012, ' Influenza Virus A Infection of Human Monocyte and Macrophage Subpopulations Reveals Increased Susceptibility Associated with Cell Differentiation ', PLoS ONE, vol. 7, no. 1, e29443 . https://doi.org/10.1371/journal.pone.0029443, PLoS ONE, Vol 7, Iss 1, p e29443 (2012), PLoS ONE
- Accession number :
- edsair.doi.dedup.....005b8122445773b897ec562d4f942124