Back to Search Start Over

Discrimination of Escherichia coli, Shigella flexneri , and Shigella sonnei using lipid profiling by MALDI‐TOF mass spectrometry paired with machine learning

Authors :
Jade Pizzato
Wenhao Tang
Sandrine Bernabeu
Rémy A. Bonnin
Emmanuelle Bille
Eric Farfour
Thomas Guillard
Olivier Barraud
Vincent Cattoir
Chloe Plouzeau
Stéphane Corvec
Vahid Shahrezaei
Laurent Dortet
Gerald Larrouy‐Maumus
Imperial College London
French National Reference Center for Antibiotic Resistance: Carbapenemase producing Enterobacteriaceae [Le Kremlin-Bicêtre]
Hôpital Bicêtre
Immunologie des Maladies Virales et Autoimmunes (IMVA - U1184)
Université Paris-Sud - Paris 11 (UP11)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de la Santé et de la Recherche Médicale (INSERM)
Laboratoire de Microbiologie Clinique [AP-HP Hôpital Necker-Enfants Malades]
CHU Necker - Enfants Malades [AP-HP]
Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)
Hôpital Foch [Suresnes]
Pathologies Pulmonaires et Plasticité Cellulaire - UMR-S 1250 (P3CELL)
Université de Reims Champagne-Ardenne (URCA)-Institut National de la Santé et de la Recherche Médicale (INSERM)
Centre Hospitalier Universitaire de Reims (CHU Reims)
CHU Limoges
Centre d'Investigation Clinique de Limoges (CIC1435)
CHU Limoges-Institut National de la Santé et de la Recherche Médicale (INSERM)
Anti-infectieux : supports moléculaires des résistances et innovations thérapeutiques (RESINFIT)
CHU Limoges-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut Génomique, Environnement, Immunité, Santé, Thérapeutique (GEIST)
Université de Limoges (UNILIM)-Université de Limoges (UNILIM)
Centre National de Référence de la Résistance aux Antibiotiques [CHU Rennes] (CNR)
CHU Pontchaillou [Rennes]
ARN régulateurs bactériens et médecine (BRM)
Université de Rennes (UR)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Structure Fédérative de Recherche en Biologie et Santé de Rennes ( Biosit : Biologie - Santé - Innovation Technologique )
Centre hospitalier universitaire de Poitiers (CHU Poitiers)
Immunology and New Concepts in ImmunoTherapy (INCIT)
Université d'Angers (UA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Centre hospitalier universitaire de Nantes (CHU Nantes)-Nantes Université - UFR de Médecine et des Techniques Médicales (Nantes Univ - UFR MEDECINE)
Nantes Université - pôle Santé
Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ)-Nantes Université - pôle Santé
Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ)
Centre hospitalier universitaire de Nantes (CHU Nantes)
Medical Research Council. Grant Number: 105603/Z/14/Z
Pecqueret, Valérie
Source :
MicrobiologyOpen, MicrobiologyOpen, 2022, 11 (4), pp.e1313. ⟨10.1002/mbo3.1313⟩
Publication Year :
2022
Publisher :
HAL CCSD, 2022.

Abstract

International audience; Matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) has become a staple in clinical microbiology laboratories. Protein-profiling of bacteria using this technique has accelerated the identification of pathogens in diagnostic workflows. Recently, lipid profiling has emerged as a way to complement bacterial identification where protein-based methods fail to provide accurate results. This study aimed to address the challenge of rapid discrimination between Escherichia coli and Shigella spp. using MALDI-TOF MS in the negative ion mode for lipid profiling coupled with machine learning. Both E. coli and Shigella species are closely related; they share high sequence homology, reported for 16S rRNA gene sequence similarities between E. coli and Shigella spp. exceeding 99%, and a similar protein expression pattern but are epidemiologically distinct. A bacterial collection of 45 E. coli, 48 Shigella flexneri, and 62 Shigella sonnei clinical isolates were submitted to lipid profiling in negative ion mode using the MALDI Biotyper Sirius® system after treatment with mild-acid hydrolysis (acetic acid 1% v/v for 15 min at 98°C). Spectra were then analyzed using our in-house machine learning algorithm and top-ranked features used for the discrimination of the bacterial species. Here, as a proof-of-concept, we showed that lipid profiling might have the potential to differentiate E. coli from Shigella species using the analysis of the top five ranked features obtained by MALDI-TOF MS in the negative ion mode of the MALDI Biotyper Sirius® system. Based on this new approach, MALDI-TOF MS analysis of lipids might help pave the way toward these goals.

Details

Language :
English
ISSN :
20458827
Database :
OpenAIRE
Journal :
MicrobiologyOpen, MicrobiologyOpen, 2022, 11 (4), pp.e1313. ⟨10.1002/mbo3.1313⟩
Accession number :
edsair.doi.dedup.....0080ef567c06028e854f74751a4a9767