Back to Search Start Over

Stieltjes constants of L-functions in the extended Selberg class

Authors :
Sumaia Saad Eddin
Ade Irma Suriajaya
Shōta Inoue
Source :
The Ramanujan Journal
Publication Year :
2021
Publisher :
Springer US, 2021.

Abstract

Let f be an arithmetic function and let $${\mathcal {S}}^\#$$ S # denote the extended Selberg class. We denote by $${\mathcal {L}}(s) = \sum _{n = 1}^{\infty }\frac{f(n)}{n^s}$$ L ( s ) = ∑ n = 1 ∞ f ( n ) n s the Dirichlet series attached to f. The Laurent–Stieltjes constants of $${\mathcal {L}}(s)$$ L ( s ) , which belongs to $${\mathcal {S}}^\#$$ S # , are the coefficients of the Laurent expansion of $${\mathcal {L}}$$ L at its pole $$s=1$$ s = 1 . In this paper, we give an upper bound of these constants, which is a generalization of many known results.

Details

Language :
English
ISSN :
15729303 and 13824090
Volume :
55
Issue :
2
Database :
OpenAIRE
Journal :
The Ramanujan Journal
Accession number :
edsair.doi.dedup.....0082838a3857abb03fa1c97fba075cda