Back to Search
Start Over
Stieltjes constants of L-functions in the extended Selberg class
- Source :
- The Ramanujan Journal
- Publication Year :
- 2021
- Publisher :
- Springer US, 2021.
-
Abstract
- Let f be an arithmetic function and let $${\mathcal {S}}^\#$$ S # denote the extended Selberg class. We denote by $${\mathcal {L}}(s) = \sum _{n = 1}^{\infty }\frac{f(n)}{n^s}$$ L ( s ) = ∑ n = 1 ∞ f ( n ) n s the Dirichlet series attached to f. The Laurent–Stieltjes constants of $${\mathcal {L}}(s)$$ L ( s ) , which belongs to $${\mathcal {S}}^\#$$ S # , are the coefficients of the Laurent expansion of $${\mathcal {L}}$$ L at its pole $$s=1$$ s = 1 . In this paper, we give an upper bound of these constants, which is a generalization of many known results.
- Subjects :
- Algebra and Number Theory
L-function
Laurent series
010102 general mathematics
Stieltjes constants
010103 numerical & computational mathematics
01 natural sciences
Upper and lower bounds
Article
Combinatorics
symbols.namesake
11N37
Number theory
Laurent–Stieltjes constant
11Y60
Extended Selberg class
symbols
Arithmetic function
0101 mathematics
Selberg class
Dirichlet series
Upper bound
Mathematics
Subjects
Details
- Language :
- English
- ISSN :
- 15729303 and 13824090
- Volume :
- 55
- Issue :
- 2
- Database :
- OpenAIRE
- Journal :
- The Ramanujan Journal
- Accession number :
- edsair.doi.dedup.....0082838a3857abb03fa1c97fba075cda