Back to Search Start Over

Formation of small metallic precipitates of niobium in α-Al2O3 implanted with niobium ions

Authors :
M. Brunel
Stella M. M. Ramos
L.L. Horton
Laurence Romana
Carl J. McHargue
P. Thevenard
L. Gea
Bruno Canut
Université des Antilles (UA)
Groupe de Technologie des Surfaces et Interfaces (GTSI)
INL - Spectroscopies et Nanomatériaux (INL - S&N)
Institut des Nanotechnologies de Lyon (INL)
École Centrale de Lyon (ECL)
Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon-École supérieure de Chimie Physique Electronique de Lyon (CPE)-Institut National des Sciences Appliquées de Lyon (INSA Lyon)
Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL)
Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)
Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL)
Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)
Source :
Surface and Coatings Technology, Surface and Coatings Technology, Elsevier, 1992, 51 (1-3), pp.410-414. ⟨10.1016/0257-8972(92)90273-D⟩
Publication Year :
1992
Publisher :
Elsevier BV, 1992.

Abstract

Niobium implantations were performed in α-Al2O3 single crystals to study the chemical interactions between the implanted species and the oxide and to study the microstructural evolution of the implanted layer. The investigation focused on both as-implanted and the oxide and to study the microstructural evolution of the implanted layer. The investigation focused on both as-implanted specimens and specimens that underwent post-implantation anneals in a reducing atmosphere. Ion implantations were performed at 300 K with 150 keV particle energies and fluences ranging from 1016 to 2 × 1017 ions cm-2. Rutherford backscattering spectroscopy (RBS) and X-ray photoemission spectroscopy (XPS) allowed the characterization of the implanted profiles and determination of the chemical state of the implanted ions. X-ray diffraction at glancing incidence and RBS analysis in a channeling geometry were performed to follow the microstructural evolution of the implanted layer. The oxidation state of niobium and the microstructure of the implanted layer were dependent on the atomic concentration of niobium in α-Al2O3. An amorphous phase was observed after a threshold fluence of 5 × 1016 ions cm-2. The amorphous phase contained small metallic precipitates of niobium with a mean diameter of 1 nm. The physical properties of such niobium clusters embedded in an amorphous oxide layer were studied in detail. Electrical conductivity measurements showed that a hopping process between the metallic precipitates was the likely mechanism operating for this system.

Details

ISSN :
02578972
Volume :
51
Database :
OpenAIRE
Journal :
Surface and Coatings Technology
Accession number :
edsair.doi.dedup.....00ba1e61e9172715455eea72ff7103fe
Full Text :
https://doi.org/10.1016/0257-8972(92)90273-d