Back to Search
Start Over
Syringyl lignin production in conifers: Proof of concept in a Pine tracheary element system
- Source :
- Proceedings of the National Academy of Sciences. 112:6218-6223
- Publication Year :
- 2015
- Publisher :
- Proceedings of the National Academy of Sciences, 2015.
-
Abstract
- Conifers (softwoods) naturally lack syringyl units in their lignins, rendering lignocellulosic materials from such species more difficult to process than syringyl-rich hardwood species. Using a transformable Pinus radiata tracheary element (TE) system as an experimental platform, we investigated whether metabolic engineering can be used to create syringyl lignin in conifers. Pyrolysis-GC/MS and 2D-NMR analysis of P. radiata TE cultures transformed to express ferulate 5-hydroxylase (F5H) and caffeic acid O-methyltransferase (COMT) from Liquidambar styraciflua confirmed the production and incorporation of sinapyl alcohol into the lignin polymer. Transformation with F5H was sufficient for the production of syringyl lignin in TEs, but cotransformation with COMT improved its formation. In addition, lower levels of the pathway intermediate 5-hydroxyconiferyl alcohol were evidenced in cotransformation experiments, indicating that the introduction of the COMT overcame the inefficiency of the native pine methyltransferases for supporting sinapyl alcohol production.Our results provide the proof of concept that it is possible to generate a lignin polymer that contains syringyl units in softwood species such as P. radiata, suggesting that it might be possible to retain the outstanding fiber properties of softwoods while imbuing them with the lignin characteristics of hardwoods that are more favorable for industrial processing.
- Subjects :
- Magnetic Resonance Spectroscopy
Softwood
Materials science
Polymers
Radiata
Lignin
Gas Chromatography-Mass Spectrometry
chemistry.chemical_compound
Cotransformation
Cell Wall
Gene Expression Regulation, Plant
Botany
Caffeic acid
Hardwood
Biomass
Transgenes
Plant Proteins
Multidisciplinary
biology
Pinus radiata
Biological Sciences
Pinus
Plants, Genetically Modified
biology.organism_classification
Tracheophyta
Metabolic Engineering
chemistry
Sinapyl alcohol
Alcohols
Biofuels
Subjects
Details
- ISSN :
- 10916490 and 00278424
- Volume :
- 112
- Database :
- OpenAIRE
- Journal :
- Proceedings of the National Academy of Sciences
- Accession number :
- edsair.doi.dedup.....00d892f0c1aa9e1493d9ea304f206f5b
- Full Text :
- https://doi.org/10.1073/pnas.1411926112