Back to Search
Start Over
Algebraic coherent confluence and higher globular Kleene algebras
- Source :
- Logical Methods in Computer Science. 18
- Publication Year :
- 2022
- Publisher :
- Centre pour la Communication Scientifique Directe (CCSD), 2022.
-
Abstract
- We extend the formalisation of confluence results in Kleene algebras to a formalisation of coherent confluence proofs. For this, we introduce the structure of higher globular Kleene algebra, a higher-dimensional generalisation of modal and concurrent Kleene algebra. We calculate a coherent Church-Rosser theorem and a coherent Newman's lemma in higher Kleene algebras by equational reasoning. We instantiate these results in the context of higher rewriting systems modelled by polygraphs.
- Subjects :
- FOS: Computer and information sciences
Computer Science - Logic in Computer Science
TheoryofComputation_COMPUTATIONBYABSTRACTDEVICES
General Computer Science
Mathematics - Category Theory
Logic in Computer Science (cs.LO)
Theoretical Computer Science
TheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGES
TheoryofComputation_LOGICSANDMEANINGSOFPROGRAMS
Computer Science::Logic in Computer Science
ComputingMethodologies_SYMBOLICANDALGEBRAICMANIPULATION
FOS: Mathematics
Computer Science::Programming Languages
Category Theory (math.CT)
Computer Science::Formal Languages and Automata Theory
Subjects
Details
- ISSN :
- 18605974
- Volume :
- 18
- Database :
- OpenAIRE
- Journal :
- Logical Methods in Computer Science
- Accession number :
- edsair.doi.dedup.....01149b9c5172269cac771b590c1da94f
- Full Text :
- https://doi.org/10.46298/lmcs-18(4:9)2022