Back to Search Start Over

Chemical Recycling of Mixed Plastics in Electronic Waste Using Solvent-Based Processing

Authors :
Lester Anderson
Evan Yu
Wan-Ting Chen
Source :
Processes, Vol 10, Iss 66, p 66 (2022), Processes; Volume 10; Issue 1; Pages: 66
Publication Year :
2022
Publisher :
MDPI AG, 2022.

Abstract

Currently, less than 20% of electronic waste (E-waste) produced in the U.S. is recycled. To improve the recycling rate of E-waste, the study aimed to: (1) identify the major plastics found within electronic shredder residue (ESR), (2) design solvents and processing conditions capable of separating out 90% of the plastic in ESR, and (3) estimate the energy efficiency of the solvent-based process developed. Preliminary screening showed 25 wt.% of the ESR was composed of plastics, with two polymers dominating the sorted plastic fraction—polystyrene (PS, 40 wt.%) and acrylonitrile butadiene styrene (ABS, 25 wt.%). Subsequently, solvents and anti-solvents were screened using Hansen Solubility Parameter Theory for PS, ABS, and ESR dissolution. The pre-screening results showed dichloromethane (DCM) and tetrahydrofuran (THF) as the most effective solvents for PS and ABS, with methanol (MeOH) and ethylene glycol (EG) as the most effective anti-solvents. By optimizing the dissolution time and the solvents used, the highest polymer dissolution yield (99 wt.%) was achieved using DCM for 48 h. Both MeOH and EG precipitated 71 wt.% of the polymer fraction of ESR. EG removed more phosphorus containing flame retardants (94 wt.%) than MeOH (69 wt.%). Energy analysis indicated that the solvent-based processes could save 25–60% of the embodied energy for PS and ABS. Characterization showed that the solvent-based processing could preserve the high molecular weight fraction of the polymers while removing flame retardants at the same time. The results from this study prove the potential of solvent-based processing to produce secondary plastic materials from E-waste for cross-industry reuse.

Details

Language :
English
ISSN :
22279717
Volume :
10
Issue :
66
Database :
OpenAIRE
Journal :
Processes
Accession number :
edsair.doi.dedup.....01565ff5f354fb99802545f482ffd8ff