Back to Search Start Over

Cell Wall Remodeling Enzymes Modulate Fungal Cell Wall Elasticity and Osmotic Stress Resistance

Authors :
Louise A. Walker
Marion Schiavone
Alistair J. P. Brown
Hélène Martin-Yken
Iuliana V. Ene
Etienne Dague
Neil A. R. Gow
Keunsook K. Lee
Carol A. Munro
School of Medical Sciences
University of Aberdeen
Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés (LISBP)
Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse)
Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Institut National de la Recherche Agronomique (INRA)
Équipe NanoBioSystèmes (LAAS-NBS)
Laboratoire d'analyse et d'architecture des systèmes (LAAS)
Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse 1 Capitole (UT1)
Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3)
Université Fédérale Toulouse Midi-Pyrénées-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse)
Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Institut National Polytechnique (Toulouse) (Toulouse INP)
Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse 1 Capitole (UT1)
Université Fédérale Toulouse Midi-Pyrénées
UK Biotechnology and Biological Research Council (BB/F00513X/1
BB/K017365/1), the UK Medical Research Council (G0400284), the Wellcome Trust (080088
088858/Z/09/Z 097377, 101873). ANR (AFMYST project ANR-11-JSV5-001-01 n° SD 30024331)
ANR-11-JSV5-0001,AFMYST,Etude Biophysique, biochimique et biomoléculaire de la paroi des levures.(2011)
Institut National Polytechnique (Toulouse) (Toulouse INP)
Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse)
Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse III - Paul Sabatier (UT3)
Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse 1 Capitole (UT1)-Université Toulouse - Jean Jaurès (UT2J)-Institut National Polytechnique (Toulouse) (Toulouse INP)
Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse 1 Capitole (UT1)-Université Toulouse - Jean Jaurès (UT2J)
School of Medical Sciences - Institute of Medical Sciences
Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés ( LISBP )
Institut National de la Recherche Agronomique ( INRA ) -Institut National des Sciences Appliquées - Toulouse ( INSA Toulouse )
Institut National des Sciences Appliquées ( INSA ) -Institut National des Sciences Appliquées ( INSA ) -Centre National de la Recherche Scientifique ( CNRS )
Équipe NanoBioSystèmes ( LAAS-NBS )
Laboratoire d'analyse et d'architecture des systèmes [Toulouse] ( LAAS )
Centre National de la Recherche Scientifique ( CNRS ) -Université Toulouse III - Paul Sabatier ( UPS )
Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National des Sciences Appliquées - Toulouse ( INSA Toulouse )
Institut National des Sciences Appliquées ( INSA ) -Institut National des Sciences Appliquées ( INSA ) -Institut National Polytechnique [Toulouse] ( INP ) -Centre National de la Recherche Scientifique ( CNRS ) -Université Toulouse III - Paul Sabatier ( UPS )
Institut National des Sciences Appliquées ( INSA ) -Institut National des Sciences Appliquées ( INSA ) -Institut National Polytechnique [Toulouse] ( INP )
Institut National Polytechnique [Toulouse] ( INP ) -Institut National des Sciences Appliquées - Toulouse ( INSA Toulouse )
Institut National des Sciences Appliquées ( INSA ) -Institut National des Sciences Appliquées ( INSA ) -Université Paul Sabatier - Toulouse 3 ( UPS ) -Centre National de la Recherche Scientifique ( CNRS ) -Institut National Polytechnique [Toulouse] ( INP ) -Institut National des Sciences Appliquées - Toulouse ( INSA Toulouse )
Institut National des Sciences Appliquées ( INSA ) -Institut National des Sciences Appliquées ( INSA ) -Université Paul Sabatier - Toulouse 3 ( UPS ) -Centre National de la Recherche Scientifique ( CNRS )
Martin-Yken, Helene
Brown, Alistair J. P.
Institut National de la Recherche Agronomique (INRA)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse)
Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)
Université Toulouse Capitole (UT Capitole)
Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse)
Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J)
Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3)
Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP)
Université de Toulouse (UT)-Université Toulouse Capitole (UT Capitole)
Université de Toulouse (UT)
Source :
mBio, mBio, American Society for Microbiology, 2015, 6 (4), pp.e00986-15. ⟨10.1128/mBio.00986-15⟩, mBio, Vol 6, Iss 4 (2015), mBio, American Society for Microbiology, 2015, 6 (4), 〈10.1128/mBio.00986-15〉, mBio, American Society for Microbiology, 2015, 6 (4), pp.e00986-15. 〈10.1128/mBio.00986-15〉, mBio 4 (6), . (2015), mBio, 2015, 6 (4), pp.e00986-15. ⟨10.1128/mBio.00986-15⟩
Publication Year :
2015
Publisher :
HAL CCSD, 2015.

Abstract

The fungal cell wall confers cell morphology and protection against environmental insults. For fungal pathogens, the cell wall is a key immunological modulator and an ideal therapeutic target. Yeast cell walls possess an inner matrix of interlinked β-glucan and chitin that is thought to provide tensile strength and rigidity. Yeast cells remodel their walls over time in response to environmental change, a process controlled by evolutionarily conserved stress (Hog1) and cell integrity (Mkc1, Cek1) signaling pathways. These mitogen-activated protein kinase (MAPK) pathways modulate cell wall gene expression, leading to the construction of a new, modified cell wall. We show that the cell wall is not rigid but elastic, displaying rapid structural realignments that impact survival following osmotic shock. Lactate-grown Candida albicans cells are more resistant to hyperosmotic shock than glucose-grown cells. We show that this elevated resistance is not dependent on Hog1 or Mkc1 signaling and that most cell death occurs within 10 min of osmotic shock. Sudden decreases in cell volume drive rapid increases in cell wall thickness. The elevated stress resistance of lactate-grown cells correlates with reduced cell wall elasticity, reflected in slower changes in cell volume following hyperosmotic shock. The cell wall elasticity of lactate-grown cells is increased by a triple mutation that inactivates the Crh family of cell wall cross-linking enzymes, leading to increased sensitivity to hyperosmotic shock. Overexpressing Crh family members in glucose-grown cells reduces cell wall elasticity, providing partial protection against hyperosmotic shock. These changes correlate with structural realignment of the cell wall and with the ability of cells to withstand osmotic shock.<br />IMPORTANCE The C. albicans cell wall is the first line of defense against external insults, the site of immune recognition by the host, and an attractive target for antifungal therapy. Its tensile strength is conferred by a network of cell wall polysaccharides, which are remodeled in response to growth conditions and environmental stress. However, little is known about how cell wall elasticity is regulated and how it affects adaptation to stresses such as sudden changes in osmolarity. We show that elasticity is critical for survival under conditions of osmotic shock, before stress signaling pathways have time to induce gene expression and drive glycerol accumulation. Critical cell wall remodeling enzymes control cell wall flexibility, and its regulation is strongly dependent on host nutritional inputs. We also demonstrate an entirely new level of cell wall dynamism, where significant architectural changes and structural realignment occur within seconds of an osmotic shock.

Details

Language :
English
ISSN :
21612129 and 21507511
Database :
OpenAIRE
Journal :
mBio, mBio, American Society for Microbiology, 2015, 6 (4), pp.e00986-15. ⟨10.1128/mBio.00986-15⟩, mBio, Vol 6, Iss 4 (2015), mBio, American Society for Microbiology, 2015, 6 (4), 〈10.1128/mBio.00986-15〉, mBio, American Society for Microbiology, 2015, 6 (4), pp.e00986-15. 〈10.1128/mBio.00986-15〉, mBio 4 (6), . (2015), mBio, 2015, 6 (4), pp.e00986-15. ⟨10.1128/mBio.00986-15⟩
Accession number :
edsair.doi.dedup.....01ccf15c1c9d79a8596d6085cd64a3e8
Full Text :
https://doi.org/10.1128/mBio.00986-15⟩