Back to Search Start Over

Superparamagnetic nanoparticles with LC polymer brush shell as efficient dopants for ferronematic phases

Authors :
Matthias Kundt
Annette M. Schmidt
Karin Koch
Heiko Wende
Alexey Eremin
Joachim Landers
Anda Barkane
Samira Webers
Hajnalka Nádasi
Source :
Physical Chemistry Chemical Physics. 23:24557-24569
Publication Year :
2021
Publisher :
Royal Society of Chemistry (RSC), 2021.

Abstract

Liquid crystal (LC) based magnetic materials consisting of LC hosts doped with functional magnetic nanoparticles enable optical switching of the mesogens at moderate magnetic field strengths and thereby open the pathway for the design of novel smart devices. A promising route for the fabrication of stable ferronematic phases is the attachment of a covalently bound LC polymer shell onto the surface of nanoparticles. With this approach, ferronematic phases based on magnetically blocked particles and the commercial LC 4-cyano-4′-pentylbiphenyl (5CB) liquid crystal were shown to have a sufficient magnetic sensitivity, but the mechanism of the magneto-nematic coupling is unidentified. To get deeper insight into the coupling modes present in these systems, we prepared ferronematic materials based on superparamagnetic particles, which respond to external fields with internal magnetic realignment instead of mechanical rotation. This aims at clarifying whether the hard coupling of the magnetization to the particle's orientation (magnetic blocking) is a necessary component of the magnetization-nematic director coupling mechanism. We herein report the fabrication of a ferronematic phase consisting of surface-functionalized superparamagnetic Fe3O4 particles and 5CB. We characterize the phase behavior and investigate the magneto-optical properties of the new ferronematic phase and compare it to the ferronematic system containing magnetically blocked CoFe2O4 particles to get information about the origin of the magneto-nematic coupling.

Details

ISSN :
14639084 and 14639076
Volume :
23
Database :
OpenAIRE
Journal :
Physical Chemistry Chemical Physics
Accession number :
edsair.doi.dedup.....01de1b66e9bcb076806c67237424bc6b
Full Text :
https://doi.org/10.1039/d1cp03005a