Back to Search Start Over

Fabrication of Minerals Substituted Porous Hydroxyapaptite/Poly(3,4-ethylenedioxy pyrrole-co-3,4-ethylenedioxythiophene) Bilayer Coatings on Surgical Grade Stainless Steel and Its Antibacterial and Biological Activities for Orthopedic Applications

Authors :
D. Gopi
Kavitha Louis
Ramya Subramani
Shinyjoy Elangomannan
Soundarapandian Kannan
Source :
ACS Applied Materials & Interfaces. 8:12404-12421
Publication Year :
2016
Publisher :
American Chemical Society (ACS), 2016.

Abstract

Current strategies of bilayer technology have been aimed mainly at the enhancement of bioactivity, mechanical property and corrosion resistance. In the present investigation, the electropolymerization of poly(3,4-ethylenedioxypyrrole-co-3,4-ethylenedioxythiophene) (P(EDOP-co-EDOT)) with various feed ratios of EDOP/EDOT on surgical grade stainless steel (316L SS) and the successive electrodeposition of strontium (Sr(2+)), magnesium (Mg(2+)) and cerium (Ce(3+)) (with 0.05, 0.075 and 0.1 M Ce(3+)) substituted porous hydroxyapatite (M-HA) are successfully combined to produce the bioactive and corrosion resistance P(EDOP-co-EDOT)/M-HA bilayer coatings for orthopedic applications. The existence of as-developed coatings was confirmed by Fourier transform-infrared spectroscopy (FT-IR), X-ray diffraction (XRD), proton nuclear magnetic resonance spectroscopy ((1)H NMR), high resolution scanning electron microscopy (HRSEM), energy dispersive X-ray analysis (EDAX) and atomic force microscopy (AFM). Also, the mechanical and thermal behavior of the bilayer coatings were analyzed. The corrosion resistance of the as-developed coatings and also the influence of copolymer (EDOP:EDOT) feed ratio were studied in Ringer's solution by electrochemical techniques. The as-obtained results are in accord with those obtained from the chemical analysis using inductively coupled plasma atomic emission spectrometry (ICP-AES). In addition, the antibacterial activity, in vitro bioactivity, cell viability and cell adhesion tests were performed to substantiate the biocompatibility of P(EDOP-co-EDOT)/M-HA bilayer coatings. On account of these investigations, it is proved that the as-developed bilayer coatings exhibit superior bioactivity and improved corrosion resistance over 316L SS, which is potential for orthopedic applications.

Details

ISSN :
19448252 and 19448244
Volume :
8
Database :
OpenAIRE
Journal :
ACS Applied Materials & Interfaces
Accession number :
edsair.doi.dedup.....01dec6874b0871ae7444e8a52b7ce9b0
Full Text :
https://doi.org/10.1021/acsami.6b01795