Back to Search Start Over

Targeting Myeloid-derived Suppressor Cells and Programmed Death Ligand 1 Confers Therapeutic Advantage of Ablative Hypofractionated Radiation Therapy Compared With Conventional Fractionated Radiation Therapy

Authors :
Rui Li
You Lu
Qiao-Rong Huang
Jianxin Xue
Mao-Bin Meng
Jun Gui
Jie Lan
Xianming Mo
Limei Yin
Yuquan Wei
Lei Deng
Bo Lu
Lin Zhou
Baoqing Chen
Adam P. Dicker
Source :
International journal of radiation oncology, biology, physics. 101(1)
Publication Year :
2017

Abstract

Purpose Ablative hypofractionated radiation therapy (AHFRT) presents a therapeutic advantage compared with conventional fractionated radiation therapy (CFRT) for primary and oligometastatic cancers. However, the underlying mechanisms remain largely unknown. In the present study, we compared the immune alterations in response to AHFRT versus CFRT and examined the significance of immune regulations contributing to the efficacy of AHFRT. Methods and Materials We established subcutaneous tumors using syngeneic lung cancer and melanoma cells in both immunocompetent and immunocompromised mice and treated them with AHFRT and CFRT under the same biologically equivalent dose. Results Compared with CFRT, AHFRT significantly inhibited tumor growth in immunocompetent, but not immunocompromised, mice. On the cellular level, AHFRT reduced the recruitment of myeloid-derived suppressor cells (MDSCs) into tumors and decreased the expression of programmed death-ligand 1 (PD-L1) on those cells, which unlashed the cytotoxicity of CD8+ T cells. Through the downregulation of vascular endothelial growth factor (VEGF), AHFRT inhibited VEGF/VEGF receptor signaling, which was essential for MDSC recruitment. When combined with anti-PD-L1 antibody, AHFRT presented with greater efficacy in controlling tumor growth and improving mouse survival. By altering immune regulation, AHFRT, but not CFRT, significantly delayed the growth of secondary tumors implanted outside the irradiation field. Conclusions Targeting MDSC recruitment and enhancing antitumor immunity are crucial for the therapeutic efficacy of AHFRT. When combined with anti-PD-L1 immunotherapy, AHFRT was more potent for cancer treatment.

Details

ISSN :
1879355X
Volume :
101
Issue :
1
Database :
OpenAIRE
Journal :
International journal of radiation oncology, biology, physics
Accession number :
edsair.doi.dedup.....028aeff12658023c36b3776840d135dd