Back to Search
Start Over
Agonist and antagonist binding to the nuclear vitamin D receptor: dynamics, mutation effects and functional implications
- Source :
- In Silico Pharmacology
- Publisher :
- Springer Nature
-
Abstract
- Purpose The thermodynamically favored complex between the nuclear vitamin D receptor (VDR) and 1α,25(OH)2-vitamin D3 (1,25D3) triggers a shift in equilibrium to favor VDR binding to DNA, heterodimerization with the nuclear retinoid x receptor (RXR) and subsequent regulation of gene transcription. The key amino acids and structural requirements governing VDR binding to nuclear coactivators (NCoA) are well defined. Yet very little is understood about the internal changes in amino acid flexibility underpinning the control of ligand affinity, helix 12 conformation and function. Herein, we use molecular dynamics (MD) to study how the backbone and side-chain flexibility of the VDR differs when a) complexed to 1α,25(OH)2-vitamin D3 (1,25D3, agonist) and (23S),25-dehydro-1α(OH)-vitamin D3-26,23-lactone (MK, antagonist); b) residues that form hydrogen bonds with the C25-OH (H305 and H397) of 1,25D3 are mutated to phenylalanine; c) helix 12 conformation is changed and ligand is removed; and d) x-ray water near the C1- and C3-OH groups of 1,25D3 are present or replaced with explicit solvent. Methods We performed molecular dynamic simulations on the apo- and holo-VDRs and used T-Analyst to monitor the changes in the backbone and side-chain flexibility of residues that form regions of the VDR ligand binding pocket (LBP), NCoA surface and control helix 12 conformation. Results The VDR-1,25D3 and VDR-MK MD simulations demonstrate that 1,25D3 and MK induce highly similar changes in backbone and side-chain flexibility in residues that form the LBP. MK however did increase the backbone and side-chain flexibility of L404 and R274 respectively. MK also induced expansion of the VDR charge clamp (i.e. NCoA surface) and weakened the intramolecular interaction between H305---V418 (helix 12) and TYR401 (helix 11). In VDR_FF, MK induced a generally more rigid LBP and stronger interaction between F397 and F422 than 1,25D3, and reduced the flexibility of the R274 side-chain. Lastly the VDR MD simulations indicate that R274 can sample multiple conformations in the presence of ligand. When the R274 is extended, the β-OH group of 1,25D3 lies proximal to the backbone carbonyl oxygen of R274 and the side-chain forms H-bonds with hinge domain residues. This differs from the x-ray, kinked geometry, where the side-chain forms an H-bond with the 1α-OH group. Furthermore, 1,25D3, but not MK was observed to stabilize the x-ray geometry of R274 during the > 30 ns MD runs. Conclusions The MD methodology applied herein provides an in silico foundation to be expanded upon to better understand the intrinsic flexibility of the VDR and better understand key side-chain and backbone movements involved in the bimolecular interaction between the VDR and its’ ligands.
- Subjects :
- Agonist
Stereochemistry
medicine.drug_class
Helix 12
Biology
Retinoid X receptor
Molecular dynamics
Calcitriol receptor
03 medical and health sciences
chemistry.chemical_compound
medicine
030304 developmental biology
Original Research
chemistry.chemical_classification
0303 health sciences
Hydrogen bond
030302 biochemistry & molecular biology
Antagonist
Ligand (biochemistry)
Amino acid
Nuclear vitamin D receptor
1α,25(OH)2-vitamin D3
chemistry
Automotive Engineering
Helix
Conformational ensemble
DNA
Vitamin D3
Subjects
Details
- Language :
- English
- ISSN :
- 21939616
- Volume :
- 1
- Issue :
- 1
- Database :
- OpenAIRE
- Journal :
- In Silico Pharmacology
- Accession number :
- edsair.doi.dedup.....031d88024ef909672e395937280641f8
- Full Text :
- https://doi.org/10.1186/2193-9616-1-2