Back to Search Start Over

A finite element framework for distortion gradient plasticity with applications to bending of thin foils

Authors :
Christian Frithiof Niordson
Emilio Martínez-Pañeda
Lorenzo Bardella
Martínez-Pañeda, Emilio [0000-0002-1562-097X]
Apollo - University of Cambridge Repository
Source :
Martínez Pañeda, E, Niordson, C F & Bardella, L 2016, ' A finite element framework for distortion gradient plasticity with applications to bending of thin foils ', International Journal of Solids and Structures, vol. 96, pp. 288–299 . https://doi.org/10.1016/j.ijsolstr.2016.06.001
Publication Year :
2016

Abstract

© 2016 Elsevier Ltd A novel general purpose Finite Element framework is presented to study small-scale metal plasticity. A distinct feature of the adopted distortion gradient plasticity formulation, with respect to strain gradient plasticity theories, is the constitutive inclusion of the plastic spin, as proposed by Gurtin (2004) through the prescription of a free energy dependent on Nye's dislocation density tensor. The proposed numerical scheme is developed by following and extending the mathematical principles established by Fleck and Willis (2009). The modeling of thin metallic foils under bending reveals a significant influence of the plastic shear strain and spin due to a mechanism associated with the higher-order boundary conditions allowing dislocations to exit the body. This mechanism leads to an unexpected mechanical response in terms of bending moment versus curvature, dependent on the foil length, if either viscoplasticity or isotropic hardening are included in the model. In order to study the effect of dissipative higher-order stresses, the mechanical response under non-proportional loading is also investigated.<br />Dr. Andrea Panteghini and Prof. Samuel Forest are acknowledged for helpful discussions. The authors gratefully acknowledge financial support from the Danish Council for Independent Research under the research career programme Sapere Aude in the project “Higher Order Theories in Solid Mechanics”. E. Martínez-Pañeda also acknowledges financial support from the Ministry of Science and Innovation of Spain through grant MAT2011-28796-CO3-03, and the University of Oviedo through grant UNOV-13-PF and an excellence mobility grant within the International Campus of Excellence programme. L. Bardella additionally acknowledges financial support from the Italian Ministry of Education, University, and Research (MIUR).

Details

Language :
English
Database :
OpenAIRE
Journal :
Martínez Pañeda, E, Niordson, C F & Bardella, L 2016, ' A finite element framework for distortion gradient plasticity with applications to bending of thin foils ', International Journal of Solids and Structures, vol. 96, pp. 288–299 . https://doi.org/10.1016/j.ijsolstr.2016.06.001
Accession number :
edsair.doi.dedup.....0416648373b1ae18f6d3b42c153edcb8
Full Text :
https://doi.org/10.1016/j.ijsolstr.2016.06.001