Back to Search Start Over

Exploration of Lorentz force on a paraboloid stretched surface in flow of Ree-Eyring nanomaterial

Authors :
M. Ijaz Khan
Seifedine Kadry
Yu-Ming Chu
Ajay Kumar
Waqar Azeem Khan
Source :
Journal of Materials Research and Technology, Vol 9, Iss 5, Pp 10265-10275 (2020)
Publication Year :
2020
Publisher :
Elsevier BV, 2020.

Abstract

In this present communication, we proposed the mathematical model for non-Newtonian liquid (Ree-Eyring model) towards a stretched surface. The Buongiorno model is used in the modelling of flow problem subject to magnetohydrodynamics, entropy generation, nonlinear thermal radiation, homogeneous-heterogeneous reactions, Brownian motion, Joule heating and thermophoresis diffusion. Convective boundary conditions are implemented at the stretched surface. With the assistance of rheological expression of Ree-Eyring model, we construct the governing flow expressions. The energy equation is developed via Brownian diffusion, nonlinear thermal radiation, Joule heating and thermophoresis. Two different types of species (homogeneous-heterogeneous reactions) are considered for the analysis of mass transport. The flow is solely induced due to a nonlinear stretched surface. The electrical conducting and chemically reactive fluid is considered for the analysis towards a stretched surface. The appropriate transformations are implemented to transform governing PDEs into a set of coupled ODEs. Shooting method has been applied to get the solutions of obtained highly non-linear ODEs. The thermodynamics second law is employed to model and calculate total entropy rate. Impact of influential variables on the flow field (velocity), gradient of velocity, temperature, gradient of temperature, concentration and entropy generation rate are studied. The engineering quantities like velocity, temperature gradients are numerical discussed in tabular form. Furthermore, the entropy rate and Bejan number show contrast impact versus larger Brinkman number.

Details

ISSN :
22387854
Volume :
9
Database :
OpenAIRE
Journal :
Journal of Materials Research and Technology
Accession number :
edsair.doi.dedup.....04685b605bfbcc6739405ba6f409f8e2