Back to Search Start Over

SMACE: A New Method for the Interpretability of Composite Decision Systems

Authors :
Lopardo, Gianluigi
Garreau, Damien
Precioso, Frederic
Ottosson, Greger
Modèles et algorithmes pour l’intelligence artificielle (MAASAI)
Inria Sophia Antipolis - Méditerranée (CRISAM)
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université Nice Sophia Antipolis (1965 - 2019) (UNS)
COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Laboratoire Jean Alexandre Dieudonné (LJAD)
Université Nice Sophia Antipolis (1965 - 2019) (UNS)
COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Scalable and Pervasive softwARe and Knowledge Systems (Laboratoire I3S - SPARKS)
Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S)
COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS)
COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S)
COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS)
Laboratoire Jean Alexandre Dieudonné (LJAD)
COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
Scalable and Pervasive softwARe and Knowledge Systems (Laboratoire I3S - SPARKS)
IBM France Lab [Biot]
IBM - Paris [Bois-Colombes]
IBM-IBM
ANR-21-CE23-0005,NIM-ML,Méthodes d'explicabilité de nouvelle génération(2021)
European Project: H2020-951911,H2020-EU.2.1.1. - INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies - Information and Communication Technologies (ICT),AI4Media(2020)
Source :
Machine Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD 2022, Grenoble, France, September 19–23, 2022, Proceedings, Part I, Machine Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD 2022, Grenoble, France, September 19–23, 2022, Proceedings, Part I, Sep 2022, Grenoble, France. pp.325-339, ⟨10.1007/978-3-031-26387-3_20⟩, Machine Learning and Knowledge Discovery in Databases ISBN: 9783031263866
Publication Year :
2022
Publisher :
HAL CCSD, 2022.

Abstract

Interpretability is a pressing issue for decision systems. Many post hoc methods have been proposed to explain the predictions of a single machine learning model. However, business processes and decision systems are rarely centered around a unique model. These systems combine multiple models that produce key predictions, and then apply decision rules to generate the final decision. To explain such decisions, we propose the Semi-Model-Agnostic Contextual Explainer (SMACE), a new interpretability method that combines a geometric approach for decision rules with existing interpretability methods for machine learning models to generate an intuitive feature ranking tailored to the end user. We show that established model-agnostic approaches produce poor results on tabular data in this setting, in particular giving the same importance to several features, whereas SMACE can rank them in a meaningful way.<br />Accepted to ECML PKDD 2022, the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases

Details

Language :
English
ISBN :
978-3-031-26386-6
ISBNs :
9783031263866
Database :
OpenAIRE
Journal :
Machine Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD 2022, Grenoble, France, September 19–23, 2022, Proceedings, Part I, Machine Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD 2022, Grenoble, France, September 19–23, 2022, Proceedings, Part I, Sep 2022, Grenoble, France. pp.325-339, ⟨10.1007/978-3-031-26387-3_20⟩, Machine Learning and Knowledge Discovery in Databases ISBN: 9783031263866
Accession number :
edsair.doi.dedup.....048b75494c78b84854a171c49b5ddc4e
Full Text :
https://doi.org/10.1007/978-3-031-26387-3_20⟩