Back to Search Start Over

Even-primitive vectors in induced supermodules for general linear supergroups and in costandard supermodules for Schur superalgebras

Authors :
František Marko
Source :
Journal of Algebraic Combinatorics. 51:369-417
Publication Year :
2019
Publisher :
Springer Science and Business Media LLC, 2019.

Abstract

Let $$G=GL(m|n)$$ be the general linear supergroup over an algebraically closed field K of characteristic zero, and let $$G_{ev}=GL(m)\times GL(n)$$ be its even subsupergroup. The induced supermodule $$H^0_G(\lambda )$$, corresponding to a dominant weight $$\lambda $$ of G, can be represented as $$H^0_{G_{ev}}(\lambda )\otimes \Lambda (Y)$$, where $$Y=V_m^*\otimes V_n$$ is a tensor product of the dual of the natural GL(m)-module $$V_m$$ and the natural GL(n)-module $$V_n$$, and $$\Lambda (Y)$$ is the exterior algebra of Y. For a dominant weight $$\lambda $$ of G, we construct explicit $$G_{ev}$$-primitive vectors in $$H^0_G(\lambda )$$. Related to this, we give explicit formulas for $$G_{ev}$$-primitive vectors of the supermodules $$H^0_{G_{ev}}(\lambda )\otimes \otimes ^k Y$$. Finally, we describe a basis of $$G_{ev}$$-primitive vectors in the largest polynomial subsupermodule $$\nabla (\lambda )$$ of $$H^0_G(\lambda )$$ (and therefore in the costandard supermodule of the corresponding Schur superalgebra S(m|n)). This yields a description of a basis of $$G_{ev}$$-primitive vectors in arbitrary induced supermodule $$H^0_G(\lambda )$$.

Details

ISSN :
15729192 and 09259899
Volume :
51
Database :
OpenAIRE
Journal :
Journal of Algebraic Combinatorics
Accession number :
edsair.doi.dedup.....04adf3a0007dcc7698155baa4b33e2dd
Full Text :
https://doi.org/10.1007/s10801-019-00879-6