Back to Search Start Over

A high order reduction–correction method for Hopf bifurcation in fluids and for viscoelastic vibration

Authors :
Jean-Marc Cadou
Faiza Boumediene
Gregory Girault
Yann Guevel
L. Duigou
Michel Potier-Ferry
El Mostafa Daya
Laboratoire d'Ingénierie des Matériaux de Bretagne (LIMATB)
Université de Bretagne Sud (UBS)-Université de Brest (UBO)-Institut Brestois du Numérique et des Mathématiques (IBNM)
Université de Brest (UBO)-Université de Brest (UBO)
Université des Sciences et de la Technologie Houari Boumediene [Alger] (USTHB)
Ecoles de Saint-Cyr Coëtquidan [Guer]
Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux (LEM3)
Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Arts et Métiers Sciences et Technologies
HESAM Université (HESAM)-HESAM Université (HESAM)
Laboratoire d'Ingénierie des Matériaux de Bretagne ( LIMATB )
Université de Bretagne Sud ( UBS ) -Institut Brestois du Numérique et des Mathématiques ( IBNM )
Université de Brest ( UBO ) -Université de Brest ( UBO ) -Université de Brest ( UBO )
Université des Sciences et de la Technologie Houari Boumediene [Alger] ( USTHB )
Laboratoire d'Etude des Microstructures et de Mécanique des Matériaux ( LEM3 )
Arts et Métiers ParisTech-Université de Lorraine ( UL ) -Centre National de la Recherche Scientifique ( CNRS )
Université de Bretagne Sud (UBS)-Institut Brestois du Numérique et des Mathématiques (IBNM)
Université de Brest (UBO)-Université de Brest (UBO)-Université de Brest (UBO)
Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Arts et Métiers Sciences et Technologies
Source :
Computational Mechanics, Computational Mechanics, Springer Verlag, 2016, 57 (2), pp.305-324. ⟨10.1007/s00466-015-1232-4⟩, Computational Mechanics, Springer Verlag, 2016, 57 (2), pp.305-324. 〈10.1007/s00466-015-1232-4〉
Publication Year :
2015
Publisher :
Springer Science and Business Media LLC, 2015.

Abstract

International audience; There are many recent studies concerning reduced-order computational methods, especially reductions by projection on a small-sized basis. But it is difficult to control the quality of the solutions if the basis is fixed once and for all. This is why we attempt to define efficient and low-cost strategies for correction and updating of the basis. These correction steps re-use previously computed quantities such as: vectors and triangulated matrices. The proposed algorithms use alternately full and reduced-size steps, allowing a strong reduction in the number of full-size tangent matrices. Two classes of applications are discussed. First, we consider an algorithm for determining Hopf bifurcation points in 2D Navier-Stokes equations, but which requires time-consuming preliminary frequency-dependent calculations. New reduction-correction procedures are applied to reduce these preliminary computations. The second application concerns the response curves of viscoelastic structures. A key point is the definition of the reduced basis. Vector Taylor series are computed within the asymptotic numerical method and the relevance of this set of vectors is analysed.

Details

ISSN :
14320924 and 01787675
Volume :
57
Database :
OpenAIRE
Journal :
Computational Mechanics
Accession number :
edsair.doi.dedup.....04c702a8e07682fac731ae19fcea5c81
Full Text :
https://doi.org/10.1007/s00466-015-1232-4