Back to Search Start Over

Gene Set Signature of Reversal Reaction Type I in Leprosy Patients

Authors :
Nguyen Van Thuc
Luis B. Barreiro
Marianna Orlova
Alexandre Alcaïs
Aurélie Cobat
Nguyen Ngoc Ba
Yohann Nédélec
Erwin Schurr
Laurent Abel
Vu Hong Thai
Nguyen Thu Huong
John S. Spencer
Source :
PLoS Genetics, Vol 9, Iss 7, p e1003624 (2013), PLoS Genetics
Publication Year :
2013
Publisher :
Public Library of Science (PLoS), 2013.

Abstract

Leprosy reversal reactions type 1 (T1R) are acute immune episodes that affect a subset of leprosy patients and remain a major cause of nerve damage. Little is known about the relative importance of innate versus environmental factors in the pathogenesis of T1R. In a retrospective design, we evaluated innate differences in response to Mycobacterium leprae between healthy individuals and former leprosy patients affected or free of T1R by analyzing the transcriptome response of whole blood to M. leprae sonicate. Validation of results was conducted in a subsequent prospective study. We observed the differential expression of 581 genes upon exposure of whole blood to M. leprae sonicate in the retrospective study. We defined a 44 T1R gene set signature of differentially regulated genes. The majority of the T1R set genes were represented by three functional groups: i) pro-inflammatory regulators; ii) arachidonic acid metabolism mediators; and iii) regulators of anti-inflammation. The validity of the T1R gene set signature was replicated in the prospective arm of the study. The T1R genetic signature encompasses genes encoding pro- and anti-inflammatory mediators of innate immunity. This suggests an innate defect in the regulation of the inflammatory response to M. leprae antigens. The identified T1R gene set represents a critical first step towards a genetic profile of leprosy patients who are at increased risk of T1R and concomitant nerve damage.<br />Author Summary Leprosy type 1 reversal reactions (T1R) are an important cause of nerve damage in leprosy patients and accurate prediction of patients at increased risk of T1R is a major challenge of current leprosy control. The incidence of T1R differs widely from 6% to 67% of leprosy patients in different leprosy endemic settings. Whether or not this reflects the impact of unknown environmental triggers or differences in the genetic background across ethnicities is not known. We performed a comparative transcriptome analysis between leprosy patients affected and free of T1R in response to M. leprae antigens. As the discovery sample we enrolled cured leprosy patients who had been diagnosed with T1R at the time of leprosy diagnosis and leprosy patients who had never undergone T1R (retrospective arm). Whole genome transcriptome analysis after stimulation of blood with M. leprae antigen resulted in the definition of a T1R signature gene set. We validated the T1R gene set in RNA samples obtained from T1R-free patients at the time of leprosy diagnosis and followed for 3 years for development of T1R (prospective arm). These results confirm the role of innate factors in T1R and are a first step towards a predictive genetic T1R signature.

Details

ISSN :
15537404
Volume :
9
Database :
OpenAIRE
Journal :
PLoS Genetics
Accession number :
edsair.doi.dedup.....04ff5a831cbf7d877203a1a8b04e286e
Full Text :
https://doi.org/10.1371/journal.pgen.1003624