Back to Search
Start Over
Gender specific airway gene expression in COPD sub-phenotypes supports a role of mitochondria and of different types of leukocytes
- Source :
- Scientific Reports, 11(1). NATURE RESEARCH, Scientific Reports, Scientific Reports, Vol 11, Iss 1, Pp 1-14 (2021), Sci. Rep. 11:12848 (2021)
- Publication Year :
- 2021
-
Abstract
- Chronic obstructive pulmonary disease (COPD) is a destructive inflammatory disease and the genes expressed within the lung are crucial to its pathophysiology. We have determined the RNAseq transcriptome of bronchial brush cells from 312 stringently defined ex-smoker patients. Compared to healthy controls there were for males 40 differentially expressed genes (DEGs) and 73 DEGs for females with only 26 genes shared. The gene ontology (GO) term "response to bacterium" was shared, with several different DEGs contributing in males and females. Strongly upregulated genes TCN1 and CYP1B1 were unique to males and females, respectively. For male emphysema (E)-dominant and airway disease (A)-dominant COPD (defined by computed tomography) the term "response to stress" was found for both sub-phenotypes, but this included distinct up-regulated genes for the E-sub-phenotype (neutrophil-related CSF3R, CXCL1, MNDA) and for the A-sub-phenotype (macrophage-related KLF4, F3, CD36). In E-dominant disease, a cluster of mitochondria-encoded (MT) genes forms a signature, able to identify patients with emphysema features in a confirmation cohort. The MT-CO2 gene is upregulated transcriptionally in bronchial epithelial cells with the copy number essentially unchanged. Both MT-CO2 and the neutrophil chemoattractant CXCL1 are induced by reactive oxygen in bronchial epithelial cells. Of the female DEGs unique for E- and A-dominant COPD, 88% were detected in females only. In E-dominant disease we found a pronounced expression of mast cell-associated DEGs TPSB2, TPSAB1 and CPA3. The differential genes discovered in this study point towards involvement of different types of leukocytes in the E- and A-dominant COPD sub-phenotypes in males and females. This work was supported by the European Union, FP7 project # 200506. We acknowledge the helpful discussions with Emanuele Raineri, Barcelona, Spain and with Wilfried Karmaus, Division of Epidemiology, Biostatistics, and Environmental Health, School of Public Health, University of Memphis, Memphis, Tennessee, USA. CNAG-CRG lab is a member of the Spanish National Bioinformatics Institute (INB), PRB2-ISCIII and is supported by grant PT13/0001 of the PE I+D+i 2013-2016, funded by ISCIII and FEDER. Work by CB at Leicester and by LZH at Munich was also supported the European Union FP7 project # 270194.
- Subjects :
- Male
0301 basic medicine
CPA3
Molecular biology
Science
Respiratory Medicine and Allergy
Immunology
Gene Expression
Socio-culturale
Respiratory Mucosa
Biology
Article
Transcriptome
Kruppel-Like Factor 4
Pulmonary Disease, Chronic Obstructive
03 medical and health sciences
Medical research
Sex Factors
0302 clinical medicine
Gene expression
Leukocytes
medicine
Humans
Gene
Molecular medicine
Lungmedicin och allergi
COPD
Multidisciplinary
Gene Expression Profiling
MNDA
Computational Biology
medicine.disease
Phenotype
Mitochondria
3. Good health
ddc
respiratory tract diseases
CXCL1
030104 developmental biology
030228 respiratory system
Medicine
Female
Disease Susceptibility
Biomarkers
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Journal :
- Scientific Reports, 11(1). NATURE RESEARCH, Scientific Reports, Scientific Reports, Vol 11, Iss 1, Pp 1-14 (2021), Sci. Rep. 11:12848 (2021)
- Accession number :
- edsair.doi.dedup.....05121efdd94f77fc1a5a22d10288ed59