Back to Search Start Over

Quadratic residues and quartic residues modulo primes

Authors :
Zhi-Wei Sun
Source :
International Journal of Number Theory. 16:1833-1858
Publication Year :
2020
Publisher :
World Scientific Pub Co Pte Lt, 2020.

Abstract

In this paper we study some products related to quadratic residues and quartic residues modulo primes. Let $p$ be an odd prime and let $A$ be any integer. We mainly determine completely the product $$f_p(A):=\prod_{1\le i,j\le(p-1)/2\atop p\nmid i^2-Aij-j^2}(i^2-Aij-j^2)$$ modulo $p$; for example, if $p\equiv1\pmod4$ then $$f_p(A)\equiv\begin{cases}-(A^2+4)^{(p-1)/4}\pmod p&\text{if}\ (\frac{A^2+4}p)=1, \\(-A^2-4)^{(p-1)/4}\pmod p&\text{if}\ (\frac{A^2+4}p)=-1,\end{cases}$$ where $(\frac{\cdot}p)$ denotes the Legendre symbol. We also determine $$\prod^{(p-1)/2}_{i,j=1\atop p\nmid 2i^2+5ij+2j^2}\left(2i^2+5ij+2j^2\right) \ \text{and}\ \prod^{(p-1)/2}_{i,j=1\atop p\nmid 2i^2-5ij+2j^2}\left(2i^2-5ij+2j^2\right)$$ modulo $p$.<br />22 pages, final version

Details

ISSN :
17937310 and 17930421
Volume :
16
Database :
OpenAIRE
Journal :
International Journal of Number Theory
Accession number :
edsair.doi.dedup.....0532ff7cedc649cf8bc3e09f670c8818
Full Text :
https://doi.org/10.1142/s1793042120500955