Back to Search
Start Over
Uncovering the Thermodynamics of Monomer Binding for RNA Replication
- Source :
- Journal of the American Chemical Society
- Publication Year :
- 2015
- Publisher :
- American Chemical Society (ACS), 2015.
-
Abstract
- The nonenzymatic replication of primordial RNA is thought to have been a critical step in the origin of life. However, despite decades of effort, the poor rate and fidelity of model template copying reactions have thus far prevented an experimental demonstration of nonenzymatic RNA replication. The overall rate and fidelity of template copying depend, in part, on the affinity of free ribonucleotides to the RNA primer–template complex. We have now used 1H NMR spectroscopy to directly measure the thermodynamic association constants, Kas, of the standard ribonucleotide monophosphates (rNMPs) to native RNA primer–template complexes. The binding affinities of rNMPs to duplexes with a complementary single-nucleotide overhang follow the order C > G > A > U. Notably, these monomers bind more strongly to RNA primer–template complexes than to the analogous DNA complexes. The relative binding affinities of the rNMPs for complementary RNA primer–template complexes are in good quantitative agreement with the predictions of a nearest-neighbor analysis. With respect to G:U wobble base-pairing, we find that the binding of rGMP to a primer–template complex with a 5′-U overhang is approximately 10-fold weaker than to the complementary 5′-C overhang. We also find that the binding of rGMP is only about 2-fold weaker than the binding of rAMP to 5′-U, consistent with the poor fidelity observed in the nonenzymatic copying of U residues in RNA templates. The accurate Ka measurements for ribonucleotides obtained in this study will be useful for designing higher fidelity, more effective RNA replication systems.
- Subjects :
- Models, Molecular
Ribonucleotide
Transcription, Genetic
Stereochemistry
Origin of Life
Biochemistry
Article
Catalysis
chemistry.chemical_compound
Colloid and Surface Chemistry
Transcription (biology)
Nuclear Magnetic Resonance, Biomolecular
Binding affinities
Base Sequence
Complementary rna
RNA
DNA
Templates, Genetic
General Chemistry
Ribonucleotides
Monomer
Template
chemistry
Thermodynamics
Subjects
Details
- ISSN :
- 15205126 and 00027863
- Volume :
- 137
- Database :
- OpenAIRE
- Journal :
- Journal of the American Chemical Society
- Accession number :
- edsair.doi.dedup.....054220348673693dc5e1bb51f7ce991d
- Full Text :
- https://doi.org/10.1021/jacs.5b02707