Back to Search Start Over

Detection of Freezing of Gait Using Convolutional Neural Networks and Data From Lower Limb Motion Sensors

Authors :
Shih-Cheng Yen
Bohan Shi
Dawn Tan
Nicole Shuang-Yu Chia
Arthur Tay
Wing-Lok Au
Source :
IEEE Transactions on Biomedical Engineering. 69:2256-2267
Publication Year :
2022
Publisher :
Institute of Electrical and Electronics Engineers (IEEE), 2022.

Abstract

Parkinson's disease (PD) is a chronic, non-reversible neurodegenerative disorder, and freezing of gait (FOG) is one of the most disabling symptoms in PD as it is often the leading cause of falls and injuries that drastically reduces patients' quality of life. In order to monitor continuously and objectively PD patients who suffer from FOG and enable the possibility of on-demand cueing assistance, a sensor-based FOG detection solution can help clinicians manage the disease and help patients overcome freezing episodes. Many recent studies have leveraged deep learning models to detect FOG using signals extracted from inertial measurement unit (IMU) devices. Usually, the latent features and patterns of FOG are discovered from either the time or frequency domain. In this study, we investigated the use of the time-frequency domain by applying the Continuous Wavelet Transform to signals from IMUs placed on the lower limbs of 63 PD patients who suffered from FOG. We built convolutional neural networks to detect the FOG occurrences, and employed the Bayesian Optimisation approach to obtain the hyper-parameters. The results showed that the proposed subject-independent model was able to achieve a geometric mean of 90.7% and a F1 score of 91.5%.

Details

ISSN :
15582531 and 00189294
Volume :
69
Database :
OpenAIRE
Journal :
IEEE Transactions on Biomedical Engineering
Accession number :
edsair.doi.dedup.....055234ea174c57b2307c2463a8ba3e95