Back to Search
Start Over
Determination of in vivo dissociation constant, K, of Cdc42-effector complexes in live mammalian cells using single wavelength fluorescence cross-correlation spectroscopy
- Source :
- Journal of Biological Chemistry. 284:21100
- Publication Year :
- 2009
- Publisher :
- Elsevier BV, 2009.
-
Abstract
- The RhoGTPase Cdc42 coordinates cell morphogenesis, cell cycle, and cell polarity decisions downstream of membrane-bound receptors through distinct effector pathways. Cdc42-effector protein interactions represent important elements of cell signaling pathways that regulate cell biology in systems as diverse as yeast and humans. To derive mechanistic insights into cell signaling pathways, it is vital that we generate quantitative data from in vivo systems. We need to be able to measure parameters such as protein concentrations, rates of diffusion, and dissociation constants (KD) of protein-protein interactions in vivo. Here we show how single wavelength fluorescence cross-correlation spectroscopy in combination with Förster resonance energy transfer analysis can be used to determine KD of Cdc42-effector interactions in live mammalian cells. Constructs encoding green fluorescent protein or monomeric red fluorescent protein fusion proteins of Cdc42, an effector domain (CRIB), and two effectors, neural Wiskott-Aldrich syndrome protein (N-WASP) and insulin receptor substrate protein (IRSp53), were expressed as pairs in Chinese hamster ovary cells, and concentrations of free protein as well as complexed protein were determined. The measured KD for Cdc42V12-N-WASP, Cdc42V12-CRIB, and Cdc42V12-IRSp53 was 27, 250, and 391 nm, respectively. The determination of KD for Cdc42-effector interactions opens the way to describe cell signaling pathways quantitatively in vivo in mammalian cells.
- Subjects :
- Green Fluorescent Proteins
CHO Cells
macromolecular substances
CDC42
Biology
Biochemistry
Green fluorescent protein
Bimolecular fluorescence complementation
Cricetulus
Cricetinae
Fluorescence Resonance Energy Transfer
Animals
cdc42 GTP-Binding Protein
Molecular Biology
Cell morphogenesis
Chinese hamster ovary cell
Mechanisms of Signal Transduction
Cell Biology
Cell biology
Kinetics
Förster resonance energy transfer
Microscopy, Fluorescence
Cdc42 GTP-Binding Protein
Additions and Corrections
Fluorescence cross-correlation spectroscopy
Wiskott-Aldrich Syndrome Protein
Subjects
Details
- ISSN :
- 00219258
- Volume :
- 284
- Database :
- OpenAIRE
- Journal :
- Journal of Biological Chemistry
- Accession number :
- edsair.doi.dedup.....05590273bcc4ef8e139f3617f8cd5e4e
- Full Text :
- https://doi.org/10.1074/jbc.a900894200