Back to Search Start Over

Early subclinical increase in pulmonary water content in athletes performing sustained heavy exercise at sea level: ultrasound lung comet-tail evidence

Authors :
Danilo Menicucci
Andrea Piarulli
Mirko Passera
Giosuè Catapano
F. Frassi
Vincenzo Lionetti
Remo Bedini
Angelo Gemignani
Gianluca Di Bella
Erika Garbella
Maria Rosa Metelli
Paolo Piaggi
Valter Lubrano
Alessandro Pingitore
Silvia Pellegrini
Antonio L′Abbate
Cinzia Castagnini
Source :
American journal of physiology. Heart and circulatory physiology. 301(5)
Publication Year :
2011

Abstract

Whether prolonged strenuous exercise performed by athletes at sea level can produce interstitial pulmonary edema is under debate. Chest sonography allows to estimate extravascular lung water, creating ultrasound lung comet-tail (ULC) artifacts. The aim of the study was to determine whether pulmonary water content increases in Ironmen ( n = 31) during race at sea level and its correlation with cardiopulmonary function and systemic proinflammatory and cardiac biohumoral markers. A multiple factor analysis approach was used to determine the relations between systemic modifications and ULCs by assessing correlations among variables and groups of variables showing significant pre-post changes. All athletes were asymptomatic for cough and dyspnea at rest and after the race. Immediately after the race, a score of more than five comet tail artifacts, the threshold for a significant detection, was present in 23 athletes (74%; 16.3 ± 11.2; P < 0.01 ULC after the race vs. rest) but decreased 12 h after the end of the race (13 athletes; 42%; 6.3 ± 8.0; P < 0.01 vs. soon after the race). Multiple factor analysis showed significant correlations between ULCs and cardiac-related variables and NH2-terminal pro-brain natriuretic peptide. Healthy athletes developed subclinical increase in pulmonary water content immediately after an Ironman race at sea level, as shown by the increased number of ULCs related to cardiac changes occurring during exercise. Hemodynamic changes are one of several potential factors contributing to the mechanisms of ULCs.

Details

ISSN :
15221539
Volume :
301
Issue :
5
Database :
OpenAIRE
Journal :
American journal of physiology. Heart and circulatory physiology
Accession number :
edsair.doi.dedup.....057986f0c387be2a5cebe15b8549c125