Back to Search
Start Over
Deep-Learning-Based Neural Tissue Segmentation of MRI in Multiple Sclerosis: Effect of Training Set Size
- Source :
- J Magn Reson Imaging
- Publication Year :
- 2019
-
Abstract
- BACKGROUND The dependence of deep-learning (DL)-based segmentation accuracy of brain MRI on the training size is not known. PURPOSE To determine the required training size for a desired accuracy in brain MRI segmentation in multiple sclerosis (MS) using DL. STUDY TYPE Retrospective analysis of MRI data acquired as part of a multicenter clinical trial. STUDY POPULATION In all, 1008 patients with clinically definite MS. FIELD STRENGTH/SEQUENCE MRIs were acquired at 1.5T and 3T scanners manufactured by GE, Philips, and Siemens with dual turbo spin echo, FLAIR, and T1 -weighted turbo spin echo sequences. ASSESSMENT Segmentation results using an automated analysis pipeline and validated by two neuroimaging experts served as the ground truth. A DL model, based on a fully convolutional neural network, was trained separately using 16 different training sizes. The segmentation accuracy as a function of the training size was determined. These data were fitted to the learning curve for estimating the required training size for desired accuracy. STATISTICAL TESTS The performance of the network was evaluated by calculating the Dice similarity coefficient (DSC), and lesion true-positive and false-positive rates. RESULTS The DSC for lesions showed much stronger dependency on the sample size than gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF). When the training size was increased from 10 to 800 the DSC values varied from 0.00 to 0.86 ± 0.016 for T2 lesions, 0.87 ± 009 to 0.94 ± 0.004 for GM, 0.86 ± 0.08 to 0.94 ± 0.005 for WM, and 0.91 ± 0.009 to 0.96 ± 0.003 for CSF. DATA CONCLUSION Excellent segmentation was achieved with a training size as small as 10 image volumes for GM, WM, and CSF. In contrast, a training size of at least 50 image volumes was necessary for adequate lesion segmentation. LEVEL OF EVIDENCE 1 Technical Efficacy Stage: 1 J. Magn. Reson. Imaging 2020;51:1487-1496.
- Subjects :
- Multiple Sclerosis
Computer science
Fluid-attenuated inversion recovery
Convolutional neural network
Article
030218 nuclear medicine & medical imaging
White matter
03 medical and health sciences
0302 clinical medicine
Deep Learning
Neuroimaging
medicine
Image Processing, Computer-Assisted
Humans
Radiology, Nuclear Medicine and imaging
Segmentation
Retrospective Studies
Ground truth
business.industry
Deep learning
Brain
Pattern recognition
Magnetic Resonance Imaging
medicine.anatomical_structure
Sample size determination
Artificial intelligence
business
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Journal :
- J Magn Reson Imaging
- Accession number :
- edsair.doi.dedup.....0608a290bab915eba2a4e70912752c19