Back to Search
Start Over
Analgesic Effects of Compression at Trigger Points Are Associated With Reduction of Frontal Polar Cortical Activity as Well as Functional Connectivity Between the Frontal Polar Area and Insula in Patients With Chronic Low Back Pain: A Randomized Trial
- Source :
- Frontiers in Systems Neuroscience, Frontiers in Systems Neuroscience, Vol 13 (2019)
- Publication Year :
- 2019
- Publisher :
- Frontiers Media S.A., 2019.
-
Abstract
- BackgroundCompression of myofascial trigger points (MTrPs) in muscles is reported to reduce chronic musculoskeletal pain. Although the prefrontal cortex (PFC) is implicated in development of chronic pain, the mechanisms of how MTrP compression at low back regions affects PFC activity remain under debate. In this study, we investigated effects of MTrP compression on brain hemodynamics and EEG oscillation in subjects with chronic low back pain.MethodsThe study was a prospective, randomized, parallel-group trial and an observer and subject-blinded clinical trial. Thirty-two subjects with chronic low back pain were divided into two groups: subjects with compression at MTrPs (n = 16) or those with non-MTrPs (n = 16). Compression at MTrP or non-MTrP for 30 s was applied five times, and hemodynamic activity (near-infrared spectroscopy; NIRS) and EEGs were simultaneously recorded during the experiment.ResultsThe results indicated that compression at MTrPs significantly (1) reduced subjective pain (P < 0.05) and increased the pressure pain threshold (P < 0.05), (2) decreased the NIRS hemodynamic activity in the frontal polar area (pPFC) (P < 0.05), and (3) increased the current source density (CSD) of EEG theta oscillation in the anterior part of the PFC (P < 0.05). CSD of EEG theta oscillation was negatively correlated with NIRS hemodynamic activity in the pPFC (P < 0.05). Furthermore, functional connectivity in theta bands between the medial pPFC and insula cortex was significantly decreased in the MTrP group (P < 0.05). The functional connectivity between those regions was positively correlated with subjective low back pain (P < 0.05).DiscussionThe results suggest that MTrP compression at the lumbar muscle modulates pPFC activity and functional connectivity between the pPFC and insula, which may relieve chronic musculoskeletal pain.Trial registrationThis trial was registered at University Hospital Medical Information Network Clinical Trials Registry (UMIN000033913) on 27 August 2018, at https://upload.umin.ac.jp/cgi-open-bin/ctr/ctr_view.cgi?recptno=R000038660.
- Subjects :
- medicine.medical_specialty
Cognitive Neuroscience
Analgesic
Neuroscience (miscellaneous)
Electroencephalography
lcsh:RC321-571
03 medical and health sciences
Cellular and Molecular Neuroscience
0302 clinical medicine
Lumbar
Developmental Neuroscience
hemodynamic activity
Internal medicine
myofascial trigger point
Medicine
Prefrontal cortex
lcsh:Neurosciences. Biological psychiatry. Neuropsychiatry
030304 developmental biology
Original Research
Myofascial trigger point
0303 health sciences
prefrontal cortex
medicine.diagnostic_test
business.industry
functional connectivity
Chronic pain
oscillation
medicine.disease
Low back pain
Cardiology
chronic low back pain
medicine.symptom
business
Insula
030217 neurology & neurosurgery
Neuroscience
Subjects
Details
- Language :
- English
- ISSN :
- 16625137
- Volume :
- 13
- Database :
- OpenAIRE
- Journal :
- Frontiers in Systems Neuroscience
- Accession number :
- edsair.doi.dedup.....060a7c93cec73f2848d9f0ad9956f026