Back to Search Start Over

Molecular analysis of DNA repair gene methylation and protein expression during chemical-induced rat lung carcinogenesis

Authors :
Lin Ao
Zhihong Cui
Ziyuan Zhou
Xiao-yan Yuan
Yan-hong Zhou
Jia Cao
Yun-long Xiang
Jinyi Liu
Wen-bin Liu
Source :
Biochemical and Biophysical Research Communications. 408:595-601
Publication Year :
2011
Publisher :
Elsevier BV, 2011.

Abstract

A defective ratio between DNA damage and repair may result in the occurrence of a malignant phenotype. Previous studies have found that many genetic alterations in DNA repair genes occur frequently in lung cancer. However, the epigenetic mechanisms underlying this tumorigenesis are not clear. Herein, we have used a chemical-induced rat lung carcinogenesis model to study the evolution of methylation alterations of DNA repair genes BRCA1, ERCC1, XRCC1, and MLH1. Methylation-specific PCR and immunohistochemistry were used to analyze gene methylation status and protein expression during the progression of lung carcinogenesis. Promoter hypermethylation of BRCA1 was only detected in three samples of infiltrating carcinoma. CpG island hypermethylation of ERCC1, XRCC1, and MLH1 was found to increase gradually throughout lung carcinogenesis progression. Both the prevalence of at least one methylated gene and the average number of methylated genes were heightened in squamous metaplasia and dysplasia compared with normal tissue and hyperplasia, and was further increased in carcinoma in situ (CIS) and infiltrating carcinoma. Immunohistochemical analysis showed that BRCA1 and MLH1 protein expression decreased progressively during the stages of lung carcinogenesis, whereas ERCC1 and XRCC1 expression were only found in later stages. Although methylation levels were elevated for ERCC1 and XRCC1 during carcinogenesis, an inverse correlation with protein expression was found only for BRCA1 and MLH1. These results suggest that a continuous accumulation of DNA repair gene hypermethylation and the consequent protein alterations might be a vital molecular mechanism during the process of multistep chemical-induced rat lung carcinogenesis.

Details

ISSN :
0006291X
Volume :
408
Database :
OpenAIRE
Journal :
Biochemical and Biophysical Research Communications
Accession number :
edsair.doi.dedup.....0627b83ae9953c315897b3724b5c4104
Full Text :
https://doi.org/10.1016/j.bbrc.2011.04.067