Back to Search
Start Over
Defining best practice for microarray analyses in nutrigenomic studies
- Source :
- British Journal of Nutrition, 4, 93, 425-432
- Publication Year :
- 2005
-
Abstract
- Microarrays represent a powerful tool for studies of diet-gene interactions. Their use is, however, associated with a number of technical challenges and potential pitfalls. The cost of microarrays continues to drop but is still comparatively high. This, coupled with the complex logistical issues associated with performing nutritional microarray studies, often means that compromises have to be made in the number and type of samples analysed. Additionally, technical variations between array platforms and analytical procedures will almost inevitably lead to differences in the transcriptional responses observed. Consequently, conflicting data may be produced, important effects may be missed and/or false leads generated (e.g. apparent patterns of differential gene regulation that ultimately prove to be incorrect or not significant). This is likely to be particularly true in the field of nutrition, in which we expect that many dietary bioactive agents at nutritionally relevant concentrations will elicit subtle changes in gene transcription that may be critically important in biological terms but will be difficult to detect reliably. Thus, great care should always be taken in designing and executing microarray studies. This article seeks to provide an overview of both the main practical and theoretical considerations in microarray use that represent potential sources of technical variation and error. Wherever possible, recommendations are made on what we propose to be the best approach. The overall aims are to provide a basic framework of advice for researchers who are new to the use of microarrays and to promote a discussion of standardisation and best practice in the field. © The Authors 2005.
- Subjects :
- Biomedical Research
Microarray
Standardization
Microarrays
Best practice
Medicine (miscellaneous)
Biology
Bioinformatics
nutrigenomics
statistical analysis
image analysis
Image Processing, Computer-Assisted
Animals
Humans
Statistical analysis
animal
Nutritional Physiological Phenomena
Nutrition
Oligonucleotide Array Sequence Analysis
standardization
Nutrition and Dietetics
Genome
Microarray analysis techniques
Gene Expression Profiling
DNA microarray
methodology
Data science
Nutrition Physiology
Experimental design
RNA extraction
image processing
Gene expression profiling
Nutrigenomics
Data Interpretation, Statistical
Standardisation
microarray analysis
diet
Subjects
Details
- ISSN :
- 00071145
- Volume :
- 93
- Issue :
- 4
- Database :
- OpenAIRE
- Journal :
- The British journal of nutrition
- Accession number :
- edsair.doi.dedup.....06320e8c19b7f31e665a03fe46988709