Back to Search
Start Over
Oxygen-Limiting Conditions Enrich for Fimbriate Cells of Uropathogenic Proteus mirabilis and Escherichia coli
- Source :
- Journal of Bacteriology. 191:1382-1392
- Publication Year :
- 2009
- Publisher :
- American Society for Microbiology, 2009.
-
Abstract
- MR/P fimbriae of uropathogenic Proteus mirabilis undergo invertible element-mediated phase variation whereby an individual bacterium switches between expressing fimbriae (phase ON) and not expressing fimbriae (phase OFF). Under different conditions, the percentage of fimbriate bacteria within a population varies and could be dictated by either selection (growth advantage of one phase) or signaling (preferentially converting one phase to the other in response to external signals). Expression of MR/P fimbriae increases in a cell-density dependent manner in vitro and in vivo. However, rather than the increased cell density itself, this increase in fimbrial expression is due to an enrichment of fimbriate bacteria under oxygen limitation resulting from increased cell density. Our data also indicate that the persistence of MR/P fimbriate bacteria under oxygen-limiting conditions is a result of both selection (of MR/P fimbrial phase variants) and signaling (via modulation of expression of the MrpI recombinase). Furthermore, the mrpJ transcriptional regulator encoded within the mrp operon contributes to phase switching. Type 1 fimbriae of Escherichia coli , which are likewise subject to phase variation via an invertible element, also increase in expression during reduced oxygenation. These findings provide evidence to support a mechanism for persistence of fimbriate bacteria under oxygen limitation, which is relevant to disease progression within the oxygen-restricted urinary tract.
- Subjects :
- Fimbria
Population
Genetics and Molecular Biology
Biology
medicine.disease_cause
Microbiology
Fimbriae Proteins
Recombinases
Mice
Bacterial Proteins
Escherichia coli
medicine
Recombinase
Animals
Humans
education
Proteus mirabilis
Molecular Biology
Escherichia coli Infections
Phase variation
education.field_of_study
Gene Expression Regulation, Bacterial
biology.organism_classification
Enterobacteriaceae
Culture Media
Oxygen
Fimbriae, Bacterial
Urinary Tract Infections
Mice, Inbred CBA
bacteria
Female
Proteus Infections
Signal Transduction
Subjects
Details
- ISSN :
- 10985530 and 00219193
- Volume :
- 191
- Database :
- OpenAIRE
- Journal :
- Journal of Bacteriology
- Accession number :
- edsair.doi.dedup.....0676814d81ae28688a6d77679f657b26
- Full Text :
- https://doi.org/10.1128/jb.01550-08