Back to Search Start Over

Author Correction: Nuclear localization of Beclin 1 promotes radiation-induced DNA damage repair independent of autophagy

Authors :
Yan Cao
Chaorong Ge
Li Xu
Jianrong Wang
Lili Yan
Ni An
Lan Xu
Daohong Zhou
Yixuan Fang
Gaoyue Jiang
Na Yuan
Fei Xu
Suping Zhang
Jialing Xie
Xiaoying Zhang
Source :
Scientific Reports, Vol 9, Iss 1, Pp 1-3 (2019), Scientific Reports
Publication Year :
2019
Publisher :
Nature Publishing Group, 2019.

Abstract

Beclin 1 is a well-established core mammalian autophagy protein that is embryonically indispensable and has been presumed to suppress oncogenesis via an autophagy-mediated mechanism. Here, we show that Beclin 1 is a prenatal primary cytoplasmic protein but rapidly relocated into the nucleus during postnatal development in mice. Surprisingly, deletion of beclin1 in in vitro human cells did not block an autophagy response, but attenuated the expression of several DNA double-strand break (DSB) repair proteins and formation of repair complexes, and reduced an ability to repair DNA in the cells exposed to ionizing radiation (IR). Overexpressing Beclin 1 improved the repair of IR-induced DSB, but did not restore an autophagy response in cells lacking autophagy gene Atg7, suggesting that Beclin 1 may regulate DSB repair independent of autophagy in the cells exposed to IR. Indeed, we found that Beclin 1 could directly interact with DNA topoisomerase IIβ and was recruited to the DSB sites by the interaction. These findings reveal a novel function of Beclin 1 in regulation of DNA damage repair independent of its role in autophagy particularly when the cells are under radiation insult.

Details

Language :
English
ISSN :
20452322
Volume :
9
Issue :
1
Database :
OpenAIRE
Journal :
Scientific Reports
Accession number :
edsair.doi.dedup.....06e91595bc9f68ec71ea1adb3a096ffb