Back to Search Start Over

LOCAL STABILIZATION OF COMPRESSIBLE NAVIER-STOKES EQUATIONS IN ONE DIMENSION AROUND NON-ZERO VELOCITY

Authors :
Mitra, Debanjana
Ramaswamy, Mythily
Raymond, Jean-Pierre
Virginia Tech [Blacksburg]
Center for Applicable Mathematics [Bangalore] (TIFR-CAM)
Tata Institute for Fundamental Research (TIFR)
Institut de Mathématiques de Toulouse UMR5219 (IMT)
Institut National des Sciences Appliquées - Toulouse (INSA Toulouse)
Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse 1 Capitole (UT1)
Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3)
Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)
Tata Institute of Fundamental Research [Bombay] (TIFR)
Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse 1 Capitole (UT1)-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3)
Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)
Université Toulouse Capitole (UT Capitole)
Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse)
Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J)
Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3)
Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)
Source :
Advances in Differential Equations, Advances in Differential Equations, Khayyam Publishing, 2017, 22 (9-10), pp.693-736, Adv. Differential Equations 22, no. 9/10 (2017), 693-736, Advances in Differential Equations, 2017, 22 (9-10), pp.693-736
Publication Year :
2017
Publisher :
HAL CCSD, 2017.

Abstract

In this paper, we study the local stabilization of one dimensional compressible Navier-Stokes equations around a constant steady solution $(\rho_s, u_s)$, where $\rho_s>0, u_s\neq 0$. In the case of periodic boundary conditions, we determine a distributed control acting only in the velocity equation, able to stabilize the system, locally around $(\rho_s, u_s)$, with an arbitrary exponential decay rate. In the case of Dirichlet boundary conditions, we determine boundary controls for the velocity and for the density at the inflow boundary, able to stabilize the system, locally around $(\rho_s, u_s)$, with an arbitrary exponential decay rate.

Details

Language :
English
ISSN :
10799389
Database :
OpenAIRE
Journal :
Advances in Differential Equations, Advances in Differential Equations, Khayyam Publishing, 2017, 22 (9-10), pp.693-736, Adv. Differential Equations 22, no. 9/10 (2017), 693-736, Advances in Differential Equations, 2017, 22 (9-10), pp.693-736
Accession number :
edsair.doi.dedup.....06e9e3c46b9af7459fbc8eeab5228bbe