Back to Search Start Over

Neonatal C57BL/6J and parkin mice respond differently following developmental manganese exposure: Result of a high dose pilot study

Authors :
David C. Dorman
Thomas B. Bartnikas
Courtney J. Mercadante
Melanie L. Foster
Chelsea Miller
Hailey C. Maresca-Fichter
Miriam E. Dash
Source :
NeuroToxicology. 64:291-299
Publication Year :
2018
Publisher :
Elsevier BV, 2018.

Abstract

It has been suggested that childhood exposure to neurotoxicants may increase the risk of Parkinson’s disease (PD) or other neurodegenerative disease in adults. Some recessive forms of PD have been linked to loss-of-function mutations in the Park2 gene that encodes for parkin. The purpose of this pilot study was to evaluate whether responses to neonatal manganese (Mn) exposure differ in mice with a Park2 gene defect (parkin mice) when compared with a wildtype strain (C57BL/6J). Neonatal parkin and C57BL/6J littermates were randomly assigned to 0, 11, or 25 mg Mn/kg-day dose groups with oral exposures occurring from postnatal day (PND) 1 through PND 28. Motor activity was measured on PND 19–22 and 29–32. Tissue Mn concentrations were measured in liver, femur, olfactory bulb, frontal cortex, and striatum on PND 29. Hepatic and frontal cortex gene expression of Slc11a2, Slc40a1, Slc30a10, Hamp (liver only), and Park2 were also measured on PND 29. Some strain differences were seen. As expected, decreased hepatic and frontal cortex Park2 expression was seen in the parkin mice when compared with C57BL/6J mice. Untreated parkin mice also had higher liver and femur Mn concentrations when compared with the C57BL/6J mice. Exposure to ≥ 11 mg Mn/kg-day was associated with increased brain Mn concentrations in all mice, no strain difference was observed. Manganese exposure in C57Bl6, but not parkin mice, was associated with a negative correlation between striatal Mn concentration and motor activity. Manganese exposure was not associated with changes in frontal cortex gene expression. Decreased hepatic Slc30a10, Slc40a1, and Hamp expression were seen in PND 29 C57BL/6J mice given 25 mg Mn/kg-day. In contrast, Mn exposure was only associated with decreased Hamp expression in the parkin mice. Our results suggest that the Parkin gene defect did not increase the susceptibility of neonatal mice to adverse health effects associated with high-dose Mn exposure.

Details

ISSN :
0161813X
Volume :
64
Database :
OpenAIRE
Journal :
NeuroToxicology
Accession number :
edsair.doi.dedup.....078a2ad4b260845fc72119f7fb0ae44c
Full Text :
https://doi.org/10.1016/j.neuro.2017.10.002