Back to Search Start Over

Inelastic accretion of inertial particles by a towed sphere

Authors :
Jérémie Bec
Robin Vallée
Christophe Henry
Elie Hachem
Centre de Mise en Forme des Matériaux (CEMEF)
MINES ParisTech - École nationale supérieure des mines de Paris
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)
Joseph Louis LAGRANGE (LAGRANGE)
Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (... - 2019) (UNS)
COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Observatoire de la Côte d'Azur
COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)
Source :
Physical Review Fluids, Physical Review Fluids, American Physical Society, 2018, 3 (2), pp.Article 024303. ⟨10.1103/PhysRevFluids.3.024303⟩
Publication Year :
2017
Publisher :
arXiv, 2017.

Abstract

The problem of accretion of small particles by a sphere embedded in a mean flow is studied in the case where the particles undergo inelastic collisions with the solid object. The collision efficiency, which gives the flux of particles experiencing at least one bounce on the sphere, is found to depend upon the sphere Reynolds number only through the value of the critical Stokes number below which no collision occurs. In the absence of molecular diffusion, it is demonstrated that multiple bounces do not provide enough energy dissipation for the particles to stick to the surface within a finite time. This excludes the possibility of any kind of inelastic collapse, so that determining an accretion efficiency requires modelling more precisely particle-surface microphysical interactions. A straightforward choice is to assume that the particles stick when their kinetic energy at impact is below a threshold. In this view, numerical simulations are performed in order to describe the statistics of impact velocities at various values of the Reynolds number. Successive bounces are shown to enhance accretion. These results are put together in order to provide a general qualitative picture on how the accretion efficiency depends upon the non dimensional parameters of the problem.<br />Comment: 14 pages, 16 figures

Details

ISSN :
2469990X
Database :
OpenAIRE
Journal :
Physical Review Fluids, Physical Review Fluids, American Physical Society, 2018, 3 (2), pp.Article 024303. ⟨10.1103/PhysRevFluids.3.024303⟩
Accession number :
edsair.doi.dedup.....07b0908a3c61bc5df4a349d4dcdf72e2
Full Text :
https://doi.org/10.48550/arxiv.1708.03198