Back to Search Start Over

Vertebral corners detection on sagittal X-rays based on shape modelling, random forest classifiers and dedicated visual features

Authors :
Elsa D. Angelini
Wafa Skalli
Laurent Gajny
Shahin Ebrahimi
Institut de Biomecanique Humaine Georges Charpak
Arts et Métiers ParisTech-Université Paris 13 (UP13)
Laboratoire de biomécanique (LBM)
Centre National de la Recherche Scientifique (CNRS)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Université Sorbonne Paris Cité (USPC)-Université Paris 13 (UP13)
Institut de Mécanique et d'Ingénierie de Bordeaux (I2M)
Institut National de la Recherche Agronomique (INRA)-Université de Bordeaux (UB)-École Nationale Supérieure d'Arts et Métiers (ENSAM)
Arts et Métiers Sciences et Technologies
HESAM Université (HESAM)-HESAM Université (HESAM)-Arts et Métiers Sciences et Technologies
HESAM Université (HESAM)-HESAM Université (HESAM)-Institut Polytechnique de Bordeaux-Centre National de la Recherche Scientifique (CNRS)
Télécom ParisTech
BiomecAM chair program
Université Paris 13 (UP13)-Arts et Métiers ParisTech
Université Paris 13 (UP13)-Université Sorbonne Paris Cité (USPC)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS)
HESAM Université - Communauté d'universités et d'établissements Hautes écoles Sorbonne Arts et métiers université (HESAM)-HESAM Université - Communauté d'universités et d'établissements Hautes écoles Sorbonne Arts et métiers université (HESAM)-Arts et Métiers Sciences et Technologies
HESAM Université - Communauté d'universités et d'établissements Hautes écoles Sorbonne Arts et métiers université (HESAM)-HESAM Université - Communauté d'universités et d'établissements Hautes écoles Sorbonne Arts et métiers université (HESAM)-Institut Polytechnique de Bordeaux-Centre National de la Recherche Scientifique (CNRS)
École Nationale Supérieure d'Arts et Métiers (ENSAM)
HESAM Université (HESAM)-HESAM Université (HESAM)-Institut Polytechnique de Bordeaux-Institut National de la Recherche Agronomique (INRA)-Centre National de la Recherche Scientifique (CNRS)-Université de Bordeaux (UB)
Source :
Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization, Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization, Taylor & Francis, 2018, 7 (2), pp.132-144. ⟨10.1080/21681163.2018.1463174⟩
Publication Year :
2018
Publisher :
Taylor & Francis, 2018.

Abstract

Quantitative measurements of spine shape parameters on planar X-ray images is critical for clinical applications but remains tedious and with no fully-automated solution demonstrated on the whole spine. This study aims to limit manual input, while demonstrating precise vertebrae corners positioning and shape parameter measurements from sagittal radiographs of the cervical and lumbar regions, exploiting novel dedicated visual features and specialized classifiers. A database of manually annotated X-ray images is used to train specialized Random Forest classifiers for each spine regions and corner types. An original combination of local gradient characteristics, Haar-like features, and contextual features based on patch intensity and contrast is used as visual features. The proposed method is evaluated on 49 sagittal X-rays of asymptomatic and pathological subjects, from multiple imaging sites, and with a large age range (6 – 69 years old). Performance is first evaluated for positioning a 2D spine shape model, where precisely detected corners enable to adjust the model via an original multilinear statistical regression. Root-mean square errors (RMSE) of corners localization and vertebra orientations are reported, demonstrating state-of-the-art precision compared to existing methods, but with minimal manual input. The method is then evaluated for the extraction of additional vertebrae shape characteristics, such as centre positioning, endplate centres positioning and endplate length measures, rarely studied in previous literature. The proposed method enables, with minimal initialization, fast and precise individual vertebrae delineations on sagittal radiographs on normal and pathological cases, with a level of precision and robustness required for objective support for diagnosis and therapy decision making. BiomecAM chair program

Details

Language :
English
ISSN :
21681163 and 21681171
Database :
OpenAIRE
Journal :
Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization, Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization, Taylor & Francis, 2018, 7 (2), pp.132-144. ⟨10.1080/21681163.2018.1463174⟩
Accession number :
edsair.doi.dedup.....07b7c920f3b43aaba4e652281b0ab7ac
Full Text :
https://doi.org/10.1080/21681163.2018.1463174⟩