Back to Search
Start Over
Nuclear structure of 82Kr and 82Se relevant for neutrinoless double-beta decay
- Source :
- EPJ Web of Conferences, Vol 194, p 02004 (2018)
- Publication Year :
- 2018
- Publisher :
- EDP Sciences, 2018.
-
Abstract
- Nuclear Resonance Fluorescence (NRF) experiments on the nuclei 82Kr and 82Se were performed, that are a candidates for a mother-daughter pair for the hypothetical neutrinoless double-beta (0νββ) decay. The experiment aimed at providing high-precision data to benchmark theoretical calculations of the nuclear matrix elements involved in this exotic decay mode. We have investigated the excitation energy range from 2.3MeV to 4.2MeV, where the nuclear scissors mode is expected to be located in nuclei of this mass region. Our experiment was able to constrain decay branches of the scissors mode down to a level of a few percents, comparable to previous experiments on heavy deformed 0νββ decay candidates. Reduced transition strengths of the magnetic dipole-excited states have been determined by a method that exploits the non-resonant background in the NRF spectra. They are compared to a calculation within the nuclear shell model for 82Se, which reveals their mixed orbital and spin character, hinting at a more complex microscopic structure of low-lying 1+ states.
- Subjects :
- Semileptonic decay
Physics
010308 nuclear & particles physics
QC1-999
Nuclear structure
Nuclear shell model
01 natural sciences
Nuclear physics
Resonance fluorescence
Double beta decay
0103 physical sciences
Nuclear resonance fluorescence
010306 general physics
Spin (physics)
Nuclear Experiment
Excitation
Subjects
Details
- Language :
- English
- Volume :
- 194
- Database :
- OpenAIRE
- Journal :
- EPJ Web of Conferences
- Accession number :
- edsair.doi.dedup.....085c6b0cfc04c026d003f71138d14f80