Back to Search Start Over

Approximate roots, toric resolutions and deformations of a plane branch

Authors :
Pedro Daniel González Pérez
Departamento de Álgebra [Madrid]
Universidad Complutense de Madrid = Complutense University of Madrid [Madrid] (UCM)
Supported by Programa Ramon y Cajal and by MTM2007-6798-C02-02 grants of Ministerio de Educación y Ciencia, Spain.
Source :
E-Prints Complutense: Archivo Institucional de la UCM, Universidad Complutense de Madrid, E-Prints Complutense. Archivo Institucional de la UCM, instname, J. Math. Soc. Japan 62, no. 3 (2010), 975-1004
Publication Year :
2010
Publisher :
Math Soc Japan, 2010.

Abstract

We analyze the expansions in terms of the approximate roots of a Weierstrass polynomial $f$ defining a plane branch $(C,0)$, in the light of the toric embedded resolution of the branch. This leads to the definition of a class of (non equisingular) deformations of a plane branch $(C,0)$ supported on certain monomials in the approximate roots of $f$. As a consequence we find out a Kouchnirenko type formula for the Milnor number $(C,0)$. Our results provide a geometrical approach to Abhyankar's straight line conditions and its consequences. As an application we give an equisingularity criterion for a family of plane curves to be equisingular to a plane branch and we express it algorithmically.<br />Comment: Includes a correction of the previous version of the paper

Details

Database :
OpenAIRE
Journal :
E-Prints Complutense: Archivo Institucional de la UCM, Universidad Complutense de Madrid, E-Prints Complutense. Archivo Institucional de la UCM, instname, J. Math. Soc. Japan 62, no. 3 (2010), 975-1004
Accession number :
edsair.doi.dedup.....08617b707a6cd40bb54ef5cf9a5b6ff1