Back to Search
Start Over
Approximate roots, toric resolutions and deformations of a plane branch
- Source :
- E-Prints Complutense: Archivo Institucional de la UCM, Universidad Complutense de Madrid, E-Prints Complutense. Archivo Institucional de la UCM, instname, J. Math. Soc. Japan 62, no. 3 (2010), 975-1004
- Publication Year :
- 2010
- Publisher :
- Math Soc Japan, 2010.
-
Abstract
- We analyze the expansions in terms of the approximate roots of a Weierstrass polynomial $f$ defining a plane branch $(C,0)$, in the light of the toric embedded resolution of the branch. This leads to the definition of a class of (non equisingular) deformations of a plane branch $(C,0)$ supported on certain monomials in the approximate roots of $f$. As a consequence we find out a Kouchnirenko type formula for the Milnor number $(C,0)$. Our results provide a geometrical approach to Abhyankar's straight line conditions and its consequences. As an application we give an equisingularity criterion for a family of plane curves to be equisingular to a plane branch and we express it algorithmically.<br />Comment: Includes a correction of the previous version of the paper
- Subjects :
- Power series
Polynomial
Quartic plane curve
Monomial
Plane curve
General Mathematics
2000 MSC Primary 14J17
Secondary 32S10, 14M25
deformations of a plane curve
01 natural sciences
Mathematics - Algebraic Geometry
Mathematics::Algebraic Geometry
Álgebra
0103 physical sciences
FOS: Mathematics
0101 mathematics
14M25
Algebraic Geometry (math.AG)
Principal branch
32S10
Mathematics
Mathematics::Commutative Algebra
Plane (geometry)
010102 general mathematics
Mathematical analysis
equisingularity criterion
approximate roots
Irreducibility
010307 mathematical physics
[MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG]
14J17
Subjects
Details
- Database :
- OpenAIRE
- Journal :
- E-Prints Complutense: Archivo Institucional de la UCM, Universidad Complutense de Madrid, E-Prints Complutense. Archivo Institucional de la UCM, instname, J. Math. Soc. Japan 62, no. 3 (2010), 975-1004
- Accession number :
- edsair.doi.dedup.....08617b707a6cd40bb54ef5cf9a5b6ff1