Back to Search Start Over

Crystallo-co-agglomeration: a novel technique to obtain ibuprofen-paracetamol agglomerates

Authors :
Anant Paradkar
Kakasaheb R. Mahadik
Atmaram Pawar
Shivajirao S. Kadam
Source :
AAPS PharmSciTech. 5(3)
Publication Year :
2005

Abstract

The purpose of this research was to obtain directly compressible agglomerates of ibuprofen-paracetamol containing a desired ratio of drugs using a crystallo-co-agglomeration technique. Crystallo-co-agglomeration is an extension of the spherical crystallization technique, which enables simultaneous crystallization and agglomeration of 2 or more drugs or crystallization of a drug and its simultaneous agglomeration with another drug or excipient. Dichloromethane (DCM)-water system containing polyethylene glycol (PEG) 6000, polyvinyl pyrollidone, and ethylcellulose was used as the crystallization system. DCM acted as a good solvent for ibuprofen and bridging liquid for agglomeration. The process was performed at pH 5, considering the low solubility of ibuprofen and the stability of paracetamol. Loss of paracetamol was reduced by maintaining a low process temperature and by the addition of dextrose as a solubility suppressant. The agglomerates were characterized by differential scanning calorimetry, powder x-ray diffraction (PXRD), and scanning electron microscopy and were evaluated for tableting properties. The spherical agglomerates contained an ibuprofen-paracetamol ratio in the range of 1.23 to 1.36. Micromeritic, mechanical, and compressional properties of the agglomerates were affected by incorporated polymer. The PXRD data showed reduction in intensities owing to dilution and reduced crystallinity. Thermal data showed interaction between components at higher temperature. Ethylcellulose imparted mechanical strength to the agglomerates as well as compacts. The agglomerates containing PEG have better comparessibility but drug release in the initial stages was affected owing to asperity melting, yielding harder compacts. The agglomeration and properties of agglomerates were influenced by the nature of polymer.

Details

ISSN :
15309932
Volume :
5
Issue :
3
Database :
OpenAIRE
Journal :
AAPS PharmSciTech
Accession number :
edsair.doi.dedup.....095065a01d0ecd99119e180ce4f1b67d