Back to Search Start Over

Photoreceptor Survival Is Regulated by GSTO1-1 in the Degenerating Retina

Authors :
Nilisha Fernando
Philip G. Board
Jan Provis
Yvette Wooff
Melissa Rooke
Riemke Aggio-Bruce
Joshua A Chu-Tan
Krisztina Valter
Matt Rutar
Riccardo Natoli
Haihan Jiao
Catherine Dietrich
Deepthi Menon
Janis T. Eells
Source :
Investigative Opthalmology & Visual Science. 59:4362
Publication Year :
2018
Publisher :
Association for Research in Vision and Ophthalmology (ARVO), 2018.

Abstract

Purpose Glutathione-S-transferase omega 1-1 (GSTO1-1) is a cytosolic glutathione transferase enzyme, involved in glutathionylation, toll-like receptor signaling, and calcium channel regulation. GSTO1-1 dysregulation has been implicated in oxidative stress and inflammation, and contributes to the pathogenesis of several diseases and neurological disorders; however, its role in retinal degenerations is unknown. The aim of this study was to investigate the role of GSTO1-1 in modulating oxidative stress and consequent inflammation in the normal and degenerating retina. Methods The role of GSTO1-1 in retinal degenerations was explored by using Gsto1-/- mice in a model of retinal degeneration. The expression and localization of GSTO1-1 were investigated with immunohistochemistry and Western blot. Changes in the expression of inflammatory (Ccl2, Il-1β, and C3) and oxidative stress (Nox1, Sod2, Gpx3, Hmox1, Nrf2, and Nqo1) genes were investigated via quantitative real-time polymerase chain reaction. Retinal function in Gsto1-/- mice was investigated by using electroretinography. Results GSTO1-1 was localized to the inner segment of cone photoreceptors in the retina. Gsto1-/- photo-oxidative damage (PD) mice had decreased photoreceptor cell death as well as decreased expression of inflammatory (Ccl2, Il-1β, and C3) markers and oxidative stress marker Nqo1. Further, retinal function in the Gsto1-/- PD mice was increased as compared to wild-type PD mice. Conclusions These results indicate that GSTO1-1 is required for inflammatory-mediated photoreceptor death in retinal degenerations. Targeting GSTO1-1 may be a useful strategy to reduce oxidative stress and inflammation and ameliorate photoreceptor loss, slowing the progression of retinal degenerations.

Details

ISSN :
15525783
Volume :
59
Database :
OpenAIRE
Journal :
Investigative Opthalmology & Visual Science
Accession number :
edsair.doi.dedup.....097c03b07618780bae654131e5a3441e
Full Text :
https://doi.org/10.1167/iovs.18-24627