Back to Search Start Over

Burned area prediction with semiparametric models

Authors :
María José Lombardía Cortiña
Miguel Boubeta Martínez
Wenceslao González Manteiga
Manuel Marey Pérez
Universidade de Santiago de Compostela. Departamento de Enxeñaría Agroforestal
Universidade de Santiago de Compostela. Departamento de Estatística e Investigación Operativa
Source :
RUC. Repositorio da Universidade da Coruña, instname, Minerva. Repositorio Institucional de la Universidad de Santiago de Compostela
Publication Year :
2015
Publisher :
Csiro Publishing, 2015.

Abstract

[Abstract] Wildfires are one of the main causes of forest destruction, especially in Galicia (north-west Spain), where the area burned by forest fires in spring and summer is quite high. This work uses two semiparametric time-series models to describe and predict the weekly burned area in a year: autoregressive moving average (ARMA) modelling after smoothing, and smoothing after ARMA modelling. These models can be described as a sum of a parametric component modelled by an autoregressive moving average process and a non-parametric one. To estimate the non-parametric component, local linear and kernel regression, B-splines and P-splines were considered. The methodology and software were applied to a real dataset of burned area in Galicia for the period 1999–2008. The burned area in Galicia increases strongly during summer periods. Forest managers are interested in predicting the burned area to manage resources more efficiently. The two semiparametric models are analysed and compared with a purely parametric model. In terms of error, the most successful results are provided by the first semiparametric time-series model. Ministerio del Medio Ambiente, Rural y Marino; PSE-310000-2009-4 Ministerio de Economía y Competitividad; MTM2014-52876-R Ministerio de Economía y Competitividad; MTM2011-22392 Ministerio de Economía y Competitividad; MTM2013-41383-P Xunta de Galicia; CN2012/130 Xunta de Galicia; 07MRU035291PR COST Action/UE COST-OC-2008-1-2124.

Details

Language :
English
Database :
OpenAIRE
Journal :
RUC. Repositorio da Universidade da Coruña, instname, Minerva. Repositorio Institucional de la Universidad de Santiago de Compostela
Accession number :
edsair.doi.dedup.....098e5b0498665abe3a30b208a251882c