Back to Search
Start Over
Failure mode analysis on compression of lattice structures with internal cooling channels produced by laser powder bed fusion
- Source :
- Advances in Manufacturing. 9:403-413
- Publication Year :
- 2021
- Publisher :
- Springer Science and Business Media LLC, 2021.
-
Abstract
- Conformal cooling coils have been developed during the last decades through the use of additive manufacturing (AM) technologies. The main goal of this study was to analyze how the presence of an internal channel that could act as a conformal cooling coil could affect compressive strength and quasi-elastic gradient of AlSi10Mg lattice structures produced by laser powder bed fusion (LPBF). Three different configurations of samples were tested in compression at 25 °C and 200 °C. The reference structures were body centered cubic (BBC) in the core of the samples with vertical struts alongZ(BCCZ) lattices in the outer perimeter, labelled as NC samples. The main novelty consisted in inserting a straight elliptical channel and a 45° elliptical channel inside the BCCZ lattice structures, labelled as SC and 45C samples respectively. All the samples were then tested in as-built (AB) condition, and after two post process heat treatments, commonly used for AlSi10Mg LPBF industrial components, a stress relieving (SR) and a T6 treatment. NC lattice structures AB exhibited an overall fragile fracture and therefore the SC and 45C configuration samples were tested only after thermal treatments. The test at 25 °C showed that all types of samples were characterized by negligible variations in their quasi-elastic gradients and yield strength. On the contrary, the general trend of stress-strain curves was influenced by the presence of the channel and its position. The test at 200 °C showed that NC, SC and 45C samples after SR and T6 treatments exhibited a metal-foam like deformation.
- Subjects :
- Mechanical properties at 200 °C
Conformal cooling channel
Fusion
Failure mode analysis
Materials science
Polymers and Plastics
Mechanical Engineering
02 engineering and technology
Crystal structure
Cubic crystal system
021001 nanoscience & nanotechnology
Compression (physics)
Industrial and Manufacturing Engineering
Core (optical fiber)
020303 mechanical engineering & transports
Compressive strength
0203 mechanical engineering
Mechanics of Materials
Laser powder bed fusion (LPBF)
Lattice structures
Deformation (engineering)
Composite material
0210 nano-technology
Subjects
Details
- ISSN :
- 21953597 and 20953127
- Volume :
- 9
- Database :
- OpenAIRE
- Journal :
- Advances in Manufacturing
- Accession number :
- edsair.doi.dedup.....09a44bfd98f70b49880d97b6981787b3
- Full Text :
- https://doi.org/10.1007/s40436-021-00348-z