Back to Search Start Over

Failure mode analysis on compression of lattice structures with internal cooling channels produced by laser powder bed fusion

Authors :
Enrico Virgillito
Mariangela Lombardi
Paolo Fino
Daniele Ugues
Flaviana Calignano
Diego Manfredi
Alberta Aversa
Source :
Advances in Manufacturing. 9:403-413
Publication Year :
2021
Publisher :
Springer Science and Business Media LLC, 2021.

Abstract

Conformal cooling coils have been developed during the last decades through the use of additive manufacturing (AM) technologies. The main goal of this study was to analyze how the presence of an internal channel that could act as a conformal cooling coil could affect compressive strength and quasi-elastic gradient of AlSi10Mg lattice structures produced by laser powder bed fusion (LPBF). Three different configurations of samples were tested in compression at 25 °C and 200 °C. The reference structures were body centered cubic (BBC) in the core of the samples with vertical struts alongZ(BCCZ) lattices in the outer perimeter, labelled as NC samples. The main novelty consisted in inserting a straight elliptical channel and a 45° elliptical channel inside the BCCZ lattice structures, labelled as SC and 45C samples respectively. All the samples were then tested in as-built (AB) condition, and after two post process heat treatments, commonly used for AlSi10Mg LPBF industrial components, a stress relieving (SR) and a T6 treatment. NC lattice structures AB exhibited an overall fragile fracture and therefore the SC and 45C configuration samples were tested only after thermal treatments. The test at 25 °C showed that all types of samples were characterized by negligible variations in their quasi-elastic gradients and yield strength. On the contrary, the general trend of stress-strain curves was influenced by the presence of the channel and its position. The test at 200 °C showed that NC, SC and 45C samples after SR and T6 treatments exhibited a metal-foam like deformation.

Details

ISSN :
21953597 and 20953127
Volume :
9
Database :
OpenAIRE
Journal :
Advances in Manufacturing
Accession number :
edsair.doi.dedup.....09a44bfd98f70b49880d97b6981787b3
Full Text :
https://doi.org/10.1007/s40436-021-00348-z