Back to Search Start Over

Temperature-compensated multi-point refractive index sensing based on a cascaded Fabry-Perot cavity and FMCW interferometry

Authors :
Liqiang Qiu
Dexin Ba
Yongkang Dong
Shunhu Yang
Lu Liu
Zongda Zhu
Source :
Optics Express. 29:19034
Publication Year :
2021
Publisher :
Optica Publishing Group, 2021.

Abstract

We proposed a novel temperature-compensated multi-point refractive index (RI) sensing system by the combination of the cascaded Fabry-Perot (FP) sensors and the frequency modulated continuous wave (FMCW) interferometry. The former is used for simultaneous sensing of RI and temperature, and the latter is used for multiplexing a series of the cascaded FP sensors to realize multi-point sensing. By means of Fourier transform-based algorithms, the interference spectra of each sub-FP sensors can be divided and demodulated independently. Experimentally, three cascaded FP sensors are multiplexed to verify multi-point RI and temperature sensing ability. RI sensitivity up to ∼1200 nm/RIU is obtained within RI range from 1.3330 to 1.3410, and temperature sensitivity up to ∼0.17 nm/°C is obtained within temperature range from 20 °C to 80 °C. The RI precision is as high as 10−5 RIU and the temperature precision is as high as 0.05 °C. In addition, the prospective multiplexing number could reach about 4000 estimated by the minimum detectable light power. The proposed sensing system has potential advantages in the practical applications that require a large number sensing points.

Details

ISSN :
10944087
Volume :
29
Database :
OpenAIRE
Journal :
Optics Express
Accession number :
edsair.doi.dedup.....0a6e7de261e460751918e7bc802b6dc3