Back to Search Start Over

Cellular Growth Arrest and Efflux Pumps Are Associated With Antibiotic Persisters in Streptococcus pyogenes Induced in Biofilm-Like Environments

Authors :
Bernadete Teixeira Ferreira-Carvalho
Marcos Corrêa de Mattos
Úrsula Santos Lopez
Agnes Marie Sá Figueiredo
Amada Zambrana Coronado
Luiz Gonzaga Paula de Almeida
Thais Tavares Amorim
Ana Tereza Ribeiro de Vasconcelos
Ana Maria Nunes Botelho
Russolina B. Zingali
Caroline Lopes Martini
Paul J. Planet
Clarice Neffa Gobbi
Maria Celeste Nunes de Melo
Source :
Frontiers in Microbiology, Vol 12 (2021)
Publication Year :
2021
Publisher :
Frontiers Media S.A., 2021.

Abstract

Streptococcus pyogenes (group A Streptococcus-GAS) is an important pathogen for humans. GAS has been associated with severe and invasive diseases. Despite the fact that these bacteria remain universally susceptible to penicillin, therapeutic failures have been reported in some GAS infections. Many hypotheses have been proposed to explain these antibiotic-unresponsive infections; however, none of them have fully elucidated this phenomenon. In this study, we show that GAS strains have the ability to form antimicrobial persisters when inoculated on abiotic surfaces to form a film of bacterial agglomerates (biofilm-like environment). Our data suggest that efflux pumps were possibly involved in this phenomenon. In fact, gene expression assays by real-time qRT-PCR showed upregulation of some genes associated with efflux pumps in persisters arising in the presence of penicillin. Phenotypic reversion assay and whole-genome sequencing indicated that this event was due to non-inherited resistance mechanisms. The persister cells showed downregulation of genes associated with protein biosynthesis and cell growth, as demonstrated by gene expression assays. Moreover, the proteomic analysis revealed that susceptible cells express higher levels of ribosome proteins. It is remarkable that previous studies have reported the recovery of S. pyogenes viable cells from tissue biopsies of patients presented with GAS invasive infections and submitted to therapy with antibiotics. The persistence phenomenon described herein brings new insights into the origin of therapeutic failures in S. pyogenes infections. Multifactorial mechanisms involving protein synthesis inhibition, cell growth impairment and efflux pumps seem to play roles in the formation of antimicrobial persisters in S. pyogenes.

Details

Language :
English
Volume :
12
Database :
OpenAIRE
Journal :
Frontiers in Microbiology
Accession number :
edsair.doi.dedup.....0a988b53d109158ffc4869f54de77d7f
Full Text :
https://doi.org/10.3389/fmicb.2021.716628/full