Back to Search
Start Over
Lyapunov stability of smart inverters using linearized distflow approximation
- Source :
- IET Renewable Power Generation, vol 15, iss 1, IET Renewable Power Generation, Vol 15, Iss 1, Pp 114-126 (2021)
- Publication Year :
- 2021
- Publisher :
- eScholarship, University of California, 2021.
-
Abstract
- Fast-acting smart inverters that utilize preset operating conditions to determine real and reactive power injection/consumption can create voltage instabilities (over-voltage, voltage oscillations and more) in an electrical distribution network if set-points are not properly configured. In this work, linear distribution power flow equations and droop-based Volt-Var and Volt-Watt control curves are used to analytically derive a stability criterion using \lyapnouv analysis that includes the network operating condition. The methodology is generally applicable for control curves that can be represented as Lipschitz functions. The derived Lipschitz constants account for smart inverter hardware limitations for reactive power generation. A local policy is derived from the stability criterion that allows inverters to adapt their control curves by monitoring only local voltage, thus avoiding centralized control or information sharing with other inverters. The criterion is independent of the internal time-delays of smart inverters. Simulation results for inverters with and without the proposed stabilization technique demonstrate how smart inverters can mitigate voltage oscillations locally and mitigate real and reactive power flow disturbances at the substation under multiple scenarios. The study concludes with illustrations of how the control policy can dampen oscillations caused by solar intermittency and cyber-attacks.<br />Comment: Accepted for IET Renewable Power Generation
- Subjects :
- Lyapunov function
Computer science
Stability criterion
020209 energy
TJ807-830
02 engineering and technology
Systems and Control (eess.SY)
Electrical Engineering and Systems Science - Systems and Control
7. Clean energy
Renewable energy sources
symbols.namesake
Control theory
0202 electrical engineering, electronic engineering, information engineering
FOS: Electrical engineering, electronic engineering, information engineering
Voltage droop
Electrical and Electronic Engineering
Lyapunov stability
eess.SY
Energy
Renewable Energy, Sustainability and the Environment
020208 electrical & electronic engineering
AC power
Lipschitz continuity
cs.SY
symbols
Inverter
Voltage
Subjects
Details
- Database :
- OpenAIRE
- Journal :
- IET Renewable Power Generation, vol 15, iss 1, IET Renewable Power Generation, Vol 15, Iss 1, Pp 114-126 (2021)
- Accession number :
- edsair.doi.dedup.....0ac76d7b230e037588e12973fe2696d6