Cite
A machine learning approach to galaxy properties: Joint redshift-stellar mass probability distributions with Random Forest
MLA
A. A. Plazas, et al. A Machine Learning Approach to Galaxy Properties: Joint Redshift-Stellar Mass Probability Distributions with Random Forest. Jan. 2021. EBSCOhost, https://doi.org/10.1093/mnras/stab164⟩.
APA
A. A. Plazas, L. N. Da Costa, W. G. Hartley, Maria E. S. Pereira, Brian Yanny, Marcos Lima, Alex Drlica-Wagner, J. Carretero, Antonella Palmese, E. M. Huff, Juan Garcia-Bellido, Ramon Miquel, M. A. G. Maia, Michel Aguena, V. Scarpine, A. Choi, Martin Crocce, F. J. Castander, G. Tarle, … A. Carnero Rosell. (2021). A machine learning approach to galaxy properties: Joint redshift-stellar mass probability distributions with Random Forest. https://doi.org/10.1093/mnras/stab164⟩
Chicago
A. A. Plazas, L. N. Da Costa, W. G. Hartley, Maria E. S. Pereira, Brian Yanny, Marcos Lima, Alex Drlica-Wagner, et al. 2021. “A Machine Learning Approach to Galaxy Properties: Joint Redshift-Stellar Mass Probability Distributions with Random Forest,” January. doi:10.1093/mnras/stab164⟩.