Back to Search Start Over

JNK1/2-dependent phosphorylation of angulin-1/LSR is required for the exclusive localization of angulin-1/LSR and tricellulin at tricellular contacts in EpH4 epithelial sheet

Authors :
Masayuki Murata
Daiki Nakatsu
Yuki Taguchi
Yukako Oda
Fumi Kano
Takashi Nishizono
Mikio Furuse
Kiyotaka Nishikawa
Taichi Sugawara
Source :
Genes to cells : devoted to molecularcellular mechanisms. 19(7)
Publication Year :
2013

Abstract

Tricellular tight junctions (tTJs) are specialized structural variants of tight junctions within tricellular contacts of an epithelial sheet and comprise several transmembrane proteins including lipolysis-stimulated lipoprotein receptor (angulin-1/LSR) and tricellulin. To elucidate the mechanism of its formation, we carried out stepwise screening of kinase inhibitors followed by RNAi screening to identify kinases that regulate intracellular localization of angulin-1/LSR to the tTJs using a fluorescence image-based screen. We found that the activity of JNK1 and JNK2, but not JNK3, was required for the exclusive localization of angulin-1/LSR at the tTJs. Based on a bioinformatics approach, we estimated the potential phosphorylation site of angulin-1/LSR by JNK1 to be serine 288 and experimentally confirmed that JNK1 directly phosphorylates angulin-1/LSR at this site. We found that JNK2 was also involved in the phosphorylation of angulin-1/LSR. Furthermore, GFP-tagged angulin-1/LSR(S288A), in which serine 288 was substituted by alanine, was observed to be dispersed to bicellular junctions, indicating that phosphorylation of Ser288 is crucial for the exclusive localization of angulin-1/LSR and tricellulin at tTJs. Our fluorescence image-based screening for kinases inhibitor or siRNAs combined with the phosphorylation site prediction could become a versatile and useful tool to elucidate the mechanisms underlying the maintenance of tTJs regulated by kinase networks.

Details

ISSN :
13652443
Volume :
19
Issue :
7
Database :
OpenAIRE
Journal :
Genes to cells : devoted to molecularcellular mechanisms
Accession number :
edsair.doi.dedup.....0af3ee9d46431b8cad47021324b95dba