Back to Search Start Over

The second data release from the European Pulsar Timing Array II. Customised pulsar noise models for spatially correlated gravitational waves

Authors :
Antoniadis, J.
Arumugam, P.
Arumugam, S.
Babak, S.
Bagchi, M.
Nielsen, A. S. Bak
Bassa, C. G.
Bathula, A.
Berthereau, A.
Bonetti, M.
Bortolas, E.
Brook, P. R.
Burgay, M.
Caballero, R. N.
Chalumeau, A.
Champion, D. J.
Chanlaridis, S.
Chen, S.
Cognard, I.
Dandapat, S.
Deb, D.
Desai, S.
Desvignes, G.
Dhanda-Batra, N.
Dwivedi, C.
Falxa, M.
Ferdman, R. D.
Franchini, A.
Gair, J. R.
Goncharov, B.
Gopakumar, A.
Graikou, E.
Grießmeier, J. -M.
Guillemot, L.
Guo, Y. J.
Gupta, Y.
Hisano, S.
Hu, H.
Iraci, F.
Izquierdo-Villalba, D.
Jang, J.
Jawor, J.
Janssen, G. H.
Jessner, A.
Joshi, B. C.
Kareem, F.
Karuppusamy, R.
Keane, E. F.
Keith, M. J.
Kharbanda, D.
Kikunaga, T.
Kolhe, N.
Kramer, M.
Krishnakumar, M. A.
Lackeos, K.
Lee, K. J.
Liu, K.
Liu, Y.
Lyne, A. G.
McKee, J. W.
Maan, Y.
Main, R. A.
Mickaliger, M. B.
Niţu, I. C.
Nobleson, K.
Paladi, A. K.
Parthasarathy, A.
Perera, B. B. P.
Perrodin, D.
Petiteau, A.
Porayko, N. K.
Possenti, A.
Prabu, T.
Leclere, H. Quelquejay
Rana, P.
Samajdar, A.
Sanidas, S. A.
Sesana, A.
Shaifullah, G.
Singha, J.
Speri, L.
Spiewak, R.
Srivastava, A.
Stappers, B. W.
Surnis, M.
Susarla, S. C.
Susobhanan, A.
Takahashi, K.
Tarafdar, P.
Theureau, G.
Tiburzi, C.
van der Wateren, E.
Vecchio, A.
Krishnan, V. Venkatraman
Verbiest, Joris
Wang, J.
Wang, L.
Wu, Z.
AstroParticule et Cosmologie (APC (UMR_7164))
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)
Laboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E)
Observatoire des Sciences de l'Univers en région Centre (OSUC)
Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES)
Unité Scientifique de la Station de Nançay (USN)
Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)
Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU)
Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay
Laboratoire Univers et Théories (LUTH (UMR_8102))
Publication Year :
2023
Publisher :
arXiv, 2023.

Abstract

The nanohertz gravitational wave background (GWB) is expected to be an aggregate signal of an ensemble of gravitational waves emitted predominantly by a large population of coalescing supermassive black hole binaries in the centres of merging galaxies. Pulsar timing arrays, ensembles of extremely stable pulsars, are the most precise experiments capable of detecting this background. However, the subtle imprints that the GWB induces on pulsar timing data are obscured by many sources of noise. These must be carefully characterized to increase the sensitivity to the GWB. In this paper, we present a novel technique to estimate the optimal number of frequency coefficients for modelling achromatic and chromatic noise and perform model selection. We also incorporate a new model to fit for scattering variations in the pulsar timing package temponest and created realistic simulations of the European Pulsar Timing Array (EPTA) datasets that allowed us to test the efficacy of our noise modelling algorithms. We present an in-depth analysis of the noise properties of 25 millisecond pulsars (MSPs) that form the second data release (DR2) of the EPTA and investigate the effect of incorporating low-frequency data from the Indian PTA collaboration. We use enterprise and temponest packages to compare noise models with those reported with the EPTA DR1. We find that, while in some pulsars we can successfully disentangle chromatic from achromatic noise owing to the wider frequency coverage in DR2, in others the noise models evolve in a more complicated way. We also find evidence of long-term scattering variations in PSR J1600$-$3053. Through our simulations, we identify intrinsic biases in our current noise analysis techniques and discuss their effect on GWB searches. The results presented here directly help improve sensitivity to the GWB and are already being used as part of global PTA efforts.<br />Comment: 20 pages, 6 figures, 9 tables

Details

Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....0b0ff3a84d7d321d6a03f1db9f279773
Full Text :
https://doi.org/10.48550/arxiv.2306.16225